
Giovanni Caramia
Elia Distaso

A Practical
Approach
to Computational
Fluid Dynamics
Using OpenFOAM®

A Practical Approach to Computational Fluid
Dynamics Using OpenFOAM®

Giovanni Caramia · Elia Distaso

A Practical Approach
to Computational Fluid
Dynamics Using
OpenFOAM®

Giovanni Caramia
Department of Mechanics
Mathematics and Management
Politecnico di Bari
Bari, Italy

Elia Distaso
Department of Mechanics
Mathematics and Management
Politecnico di Bari
Bari, Italy

ISBN 978-3-031-88956-1 ISBN 978-3-031-88957-8 (eBook)
https://doi.org/10.1007/978-3-031-88957-8

Translation from the Italian language edition: “La simulazione numerica delle macchine a fluido. Le basi

per l’uso di OpenFOAM®” by Giovanni Caramia and Elia Distaso, © Authors 2024. Published by Città
Studi Edizioni. All Rights Reserved.

The original submitted manuscript has been translated into English. The translation was done using
artificial intelligence. A subsequent revision was performed by the author(s) to further refine the work and
to ensure that the translation is appropriate concerning content and scientific correctness. It may, however,
read stylistically different from a conventional translation.

Extended, English-language Edition

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://orcid.org/0000-0002-9298-4785
https://doi.org/10.1007/978-3-031-88957-8

Preface

In the hope that it will prove to be a valuable resource for both teaching and learning,

this volume is designed for undergraduate and graduate students in Engineering who

are exploring computational fluid dynamics for the first time as a tool for analysing

fluid machines and devices.

The main objective is to facilitate a gradual and effective learning process,

significantly reducing the time needed to acquire the minimum level of knowledge

required to produce acceptable results for most general interest case studies. For

detailed insights, readers are referred to the texts cited in the bibliography—and the

bibliographic references contained therein—whose reading and understanding will

certainly be more straightforward once familiarity with the material presented here

is gained.

To ensure the topics covered are both interesting and comprehensible, the authors

have, in certain cases, prioritised clarity of exposition over mathematical rigour,

continuously referring to the physical meaning of the mathematical formulas consid-

ered. Researchers and engineers will also find in this book a collection of basic

concepts essential for the correct configuration of any fluid dynamics simulation

software.

To enable as many readers as possible to put into practice the content presented in

this volume, the authors have chosen to focus on the free and open-source software

OpenFOAM®, which is supported by a large and vibrant community of developers

and users. Note, however, the not insignificant difficulty in accessing and using

the related manuals; this volume represents the result of painstaking research and

the collection of information scattered across numerous sources, including books,

academic articles, multimedia notes published online, specialized forums, and more.

The initial part of this text (Chap. 1) aims to provide the necessary tools for

those wishing to perform fluid dynamic analysis using finite volume methods for

complex systems such as fluid machines. This is followed by an introduction to the

main governing equations of fluid dynamics (Chap. 2), which represent the core

of the physical description for the practical problems under study. An extensive yet

pragmatic description of the finite volume approach is then provided, starting with the

description of the main discretization methods (Chap. 3), moving on to the numerical

v

vi Preface

methodologies used to solve the systems of equations generated in these processes

(Chap. 4), and concluding with the pressure-velocity coupling problems (Chap. 5).

Having acquired the necessary knowledge to undertake practical case analysis, the

computational code OpenFOAM® is introduced (Chap. 6), with its structure and

potential described through practical examples of setup. The book concludes with a

discussion on issues related to setting boundary conditions in various cases (Chap. 7)

and the turbulence closure problem (Chap. 8).

Bari, Italy Giovanni Caramia

Elia Distaso

Competing Interests The authors have no competing interests to declare that are

relevant to the content of this manuscript.

vii

Contents

1 Preliminary Concepts . 1

1.1 Differential Operators . 1

1.1.1 Gradient . 1

1.1.2 Divergence . 3

1.1.3 Laplacian . 6

1.1.4 Curl . 8

1.1.5 Vector and Tensor Notation . 12

1.1.6 Gauss (or Divergence or Ostrogradskij) Theorem 15

1.2 Fluid Mechanics . 16

1.2.1 Strain Rate Tensor . 16

1.2.2 Q or Okubo-Weiss Criterion . 19

1.2.3 Stress Tensor . 19

1.2.4 Constitutive Equations . 20

1.3 Differential Equations with Physical Applications 22

1.3.1 Generalities on Partial Differential Equations 22

1.3.2 Mathematical Classification of Linear and Quasi

Linear Partial Differential Equations . 23

1.3.3 Transport Equation . 24

1.3.4 Wave Equation . 26

1.3.5 Heat Equation . 28

1.4 Gasdynamics . 30

1.4.1 Mechanical Waves . 30

1.4.2 Acoustic Waves Equation . 31

1.4.3 One-Dimensional Pressure Waves . 32

1.4.4 Acoustic Waves Described by Displacement

from the Equilibrium Position of the Transmitting

Medium . 35

1.4.5 Bulk Modulus . 36

1.5 Numerical Calculus . 38

1.5.1 Taylor Series Expansion and Accuracy 38

1.5.2 Mean Value Approximation . 39

ix

x Contents

1.5.3 Derivatives Approximation . 40

1.5.4 Explicit and Implicit Methods . 41

1.5.5 Fixed Point Iteration . 43

2 Governing Equations of Fluid Dynamics . 45

2.1 Control Volume . 45

2.2 Substantial Derivative . 46

2.3 The Physical Meaning of the Velocity Divergence 49

2.4 The Continuity Equation . 50

2.5 Conservation of Momentum . 53

2.5.1 Newtonian Fluids . 59

2.6 Energy Conservation Equation . 62

2.7 Considerations on the Governing Equations . 70

2.8 Further Insights on the Conservative Form . 71

2.9 General Transport Equation . 75

3 The Finite Volume Method . 79

3.1 Convective-Diffusive Fluxes . 81

3.1.1 Linear Interpolation or Central Differencing 83

3.1.2 Properties of Discretisation Schemes . 88

3.1.3 Assessment of the Central Scheme

for Convection-Diffusion Cases . 91

3.1.4 Upwind Scheme or Upwind Differencing (UD) 92

3.1.5 Linear Upwind Scheme . 97

3.1.6 QUICK Scheme (Quadratic Upwind Interpolation

for Convective Kinetics) . 98

3.1.7 Total Variation Diminishing (TVD) Schemes 102

3.1.8 The Case of Unstructured Grids . 109

3.2 Reconstruction . 109

3.2.1 Essentially Non Oscillatory (ENO) Schemes 110

3.2.2 Weighted Essentially Non Oscillatory (WENO)

Schemes . 112

3.3 Interpolation of Diffusive Fluxes . 114

3.4 Calculation of the Gradient at the Cell Centre 118

3.4.1 Calculation of the Gradient on the Centroid of the Faces . . . 121

3.5 Calculation of the Time Derivative or Transient Term 121

3.5.1 Implicit Euler Scheme . 123

3.5.2 Crank-Nicolson Scheme or Central Difference Profile 123

3.5.3 Backward Scheme or Second Order Upwind Euler 124

Contents xi

4 Linear Systems and Their Solution . 125

4.1 The Jacobi Method . 127

4.2 The Gauss-Seidel Method . 128

4.2.1 Numerical Example . 129

4.3 Diagonal Dominance and Scarborough Criterion 133

4.4 Residue and Correction/Error . 134

4.5 Stopping Criteria . 135

4.6 LU Factorisation Method . 135

4.6.1 Preconditioning . 137

4.6.2 The Gradient and Conjugate Gradient Methods 138

4.7 Multigrid Methods . 140

4.7.1 The Smoothing Property of Iterative Methods 140

4.7.2 Geometric Multigrid . 141

4.7.3 V-Cycle . 144

4.7.4 Algebraic Multigrid . 145

4.7.5 Application Example . 150

5 Pressure-Velocity Coupling . 159

5.1 The Staggered Grid . 160

5.2 Conservation of Momentum . 163

5.3 The SIMPLE Algorithm . 166

5.3.1 Numerical Example of Application of the Pressure

Equation of Correction . 170

5.3.2 Example of Application of the SIMPLE Algorithm 174

6 OpenFOAM® . 187

6.1 Discretisation Schemes . 188

6.1.1 Temporal Discretisation Schemes . 189

6.1.2 Discretisation Schemes of the Convective Terms 190

6.1.3 Gradient Discretisation Schemes . 194

6.1.4 Discretisation Schemes of Laplacian or Diffusive

Terms . 196

6.2 Examples of Discretisation Scheme Settings . 201

6.2.1 Generic Setting . 201

6.2.2 Accurate Setting . 202

6.2.3 Stable Setting . 202

6.3 Linear Solvers . 202

6.3.1 Geometric-Algebraic Multi-grid (GAMG) 205

6.4 Pressure-Velocity Coupling . 206

6.4.1 Implementation of SIMPLE and PISO

in OpenFOAM® . 206

6.4.2 The Courant Number . 221

6.5 Residual and Tolerances . 222

xii Contents

7 Boundary Conditions . 225

7.1 Boundary Conditions for Incompressible Flow 227

7.1.1 The Relative Nature of Pressure . 228

7.1.2 Inlet . 229

7.1.3 Outlet . 230

7.2 Boundary Conditions for Compressible Flow 232

7.2.1 Subsonic Inlet . 232

7.2.2 Supersonic Inlet . 233

7.2.3 Subsonic Outlet . 233

7.2.4 Supersonic Outlet . 234

7.3 Boundary Conditions Available in OpenFOAM® 234

7.3.1 Imposition of the Value and Gradient of a Quantity

at the Boundary . 234

7.3.2 Inlet-Outlet . 235

8 Turbulence . 239

8.1 Reynolds Averaged Navier–Stokes Approach 240

8.1.1 Standard k − ǫ Model . 246

8.1.2 k − ω Model . 247

8.2 k − ω SST (Shear Stress Transport) Model . 248

8.3 The Boundary Layer . 250

8.4 Wall Functions . 253

8.5 Distance from the Wall to the Centre of the First Cell Near

the Wall . 254

8.6 Wall Functions in OpenFOAM® . 255

8.6.1 kqRWallFunctions . 257

8.6.2 epsilonWallFunctions . 258

8.6.3 omegaWallFunctions . 259

8.6.4 nutWallFunctions . 260

8.7 Implementation Aspects in OpenFOAM® . 264

8.8 Initial Values of Turbulent Quantities . 265

8.9 Large Eddy Simulation (LES) . 267

8.9.1 Smagorinsky-Lilly Modelling . 271

8.9.2 Evaluation of LES Calculations . 272

Bibliography . 281

Chapter 1

Preliminary Concepts

Embarking on the study of finite volume methods and their application to the conser-

vation equations governing fluid dynamics requires mastering certain fundamental

concepts. Therefore, this chapter provides an essential overview covering differ-

ential operators (notation, definition, and their physical significance), elements of

fluid mechanics, generalities and physical applications of differential equations, ele-

ments of gas dynamics useful for studying acoustic waves, and finally, basic concepts

related to numerical computation. The approach is pragmatic and does not claim to

be exhaustive. The aim is to provide the reader with the necessary tools to be effec-

tively utilised in subsequent chapters. From another perspective, this chapter serves

as an initial reference for delving deeper into these concepts through the reading and

study of more specific texts.

1.1 Differential Operators

1.1.1 Gradient

The gradient is a differential operator denoted by the word .grad or the symbol . ∇,

called “nabla”. The gradient of a scalar function . f of three variables .(x1, x2, x3) is a

vector that, at each point in space, allows the calculation of the directional derivative

of . f in the direction of a generic unit vector v through the dot product between v

and the gradient of the function at that point. In the case of an orthonormal Cartesian

reference system, the gradient of . f (x1, x2, x3) is the vector whose components are

the first partial derivatives evaluated at the point:

. grad f = ∇ f =
∂ f

∂x1
i +

∂ f

∂x2
j +

∂ f

∂x3
k

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1
https://doi.org/10.1007/978-3-031-88957-8_1

2 1 Preliminary Concepts

where i, j, k represent the unit vectors along the coordinate axes. Using vector

notation, . ∇ can be defined as the vector whose components are the partial derivative

operators along the coordinate axes. The gradient will then be the product between

the vector .∇ and the scalar function . f . In formulas:

. ∇ f =

⎛

⎜

⎜

⎜

⎜

⎝

∂
∂x1

∂
∂x2

∂
∂x3

⎞

⎟

⎟

⎟

⎟

⎠

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂ f

∂x1

∂ f

∂x2

∂ f

∂x3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The gradient of the scalar function . f is a vector whose direction is that of the

maximum variation of the function itself, and its magnitude provides the measure of

such variation. For example, considering.x1 = x and.x2 = y, below is the calculation

of the gradient of the scalar function . f (x, y) = x2 + y2 + b, whose plot is shown

in Fig. 1.1, along with the vector field formed by its gradient.

. ∇ f =

⎛

⎜

⎜

⎜

⎝

∂ f

∂x

∂ f

∂y

⎞

⎟

⎟

⎟

⎠

= ∇ f =
(

2x

2y

)

.

Continuing to observe Fig. 1.1, it can be noticed that the vector field corresponding

to the gradient of . f develops in the xy-plane. Moreover, as one moves away from

the origin, there is an increase in both the function . f and its gradient values.

Fig. 1.1 Representation of the scalar function . f (x, y) = x2 + y2 + b together with its gradient

1.1 Differential Operators 3

The gradient of a vector function .f = (fx , fy, fz) is defined as:

. ∇f =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂ fx

∂x

∂ fy

∂x

∂ fz

∂x

∂ fx

∂y

∂ fy

∂y

∂ fz

∂y

∂ fx

∂z

∂ fy

∂z

∂ fz

∂z

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The transpose matrix of the gradient of a vector function is:

. J = (∇f)T =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂ fx

∂x

∂ fx

∂y

∂ fx

∂z

∂ fy

∂x

∂ fy

∂y

∂ fy

∂z

∂ fz

∂x

∂ fz

∂z

∂ fz

∂z

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

The transpose matrix of the gradient of a vector function is called the Jacobian

matrix, while the determinant of the Jacobian matrix is referred to as the Jacobian.

1.1.2 Divergence

The divergence is a differential operator indicated by the symbol.div or by the symbol

.∇·. The divergence of a three-dimensional vector .b = (b1, b2, b3) is

.div b = ∇ · b =
3
∑

i=1

∂

∂xi
bi =

∂b1

∂x1
+

∂b2

∂x2
+

∂b3

∂x3
(1.1)

where .bi are the components of the vector . b and .xi are the coordinates of the chosen

reference system. From a mathematical perspective, the application of the divergence

differential operator to a vector can be thought of as the dot product between the

operator .∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

and the vector . b.

To better understand the physical meaning of this differential operator, one can

consider the velocity field of a fluid in motion in its vector representation, as indicated

in Fig. 1.2, where at a limited number of points, the representative vector of the fluid

velocity is drawn. In the same figure, the curve delimiting a generic area inside which

it is desired to understand whether the fluid is accumulating or not is also depicted.

4 1 Preliminary Concepts

Fig. 1.2 Vector

representation of a fluid

motion field

For simplicity, this area can be considered as a circle centred at the origin of the

axes, as shown in Figs. 1.3 and 1.4, where a flow field is visualised. In Fig. 1.3, the

fluid tends to move particles away from the origin, while in Fig. 1.4, it tends to move

particles towards the origin. In Fig. 1.3, it is said that the function representative of

the vector field has positive divergence at the origin, and the origin is called a source.

In Fig. 1.4, it is said that the function representative of the vector field has negative

divergence at the origin, and the origin is called a sink. Considering a generic area in

space where the function is defined, it will be said that for this area, the divergence

is:

• Positive: if the balance of particles crossing its boundary is in favour the particles

exiting the area (dispersion of particles).

• Negative: if the balance of particles crossing its boundary is in favour of the

particles entering the area (accumulation of particles).

• Zero: if the number of particles entering equals the number exiting (particle

conservation).

Therefore, divergence can be interpreted as an indicator of the extent to which

particles tend to converge or spread (diverge) from a generic area in space.

As an example, let’s calculate the divergence of the vector function. V = (xy, y2 −
x2), whose representation is shown in the Fig. 1.5. Applying the definition (1.1), it is

.div V = ∇ · V =
2
∑

i=1

∂

∂xi
Vi =

∂v1

∂x1
+

∂v2

∂x2
=

∂xy

∂x
+

∂(y2 − x2)

∂y
= y + 2y = 3y.

1.1 Differential Operators 5

Fig. 1.3 Positive divergence

Fig. 1.4 Negative

divergence

6 1 Preliminary Concepts

Fig. 1.5 Vector

representation of the

function . V

From this, it is observed that the divergence is zero on the x-axis, always positive

in the positive y-axis semi-plane, and always negative in the negative y-axis semi-

plane. For further insights into the physical meaning of divergence, refer to Sect. 2.3.

Finally, it is noticed that the divergence of the product of a vector . b by a scalar

function .φ (x1, x2, x3) can be expressed as:

. ∇ · (bφ) = b · ∇φ + φ∇ · b

where the symbol .∇φ denotes the gradient vector of . φ, defined as: . ∇φ ≡
(

∂φ
∂x1

,
∂φ
∂x2

,
∂φ
∂x3

)

.

1.1.3 Laplacian

The Laplace operator, or Laplacian, is a second-order differential operator defined as

the divergence of the gradient of a function in Euclidean space. The most significant

way to denote the Laplacian is using the vector differential operator .∇2. The Laplace

operator applied to a function . f (x) in Euclidean space is the divergence of the

gradient of . f :

.∇2 f (x) = ∇·∇ f (x),

1.1 Differential Operators 7

where .x = (x1, x2, . . . , xn) represents the set of coordinates. The Laplace operator

in Cartesian coordinates, in an .n-dimensional space, is given by:

. ∇2 =
∂2

∂x21
+ · · · +

∂2

∂x2n
=

n
∑

i=1

∂2

∂x2i
.

Given a vector function. F defined in a three-dimensional Euclidean space, the Lapla-

cian is defined as the vector whose components are the scalar Laplacians of each of

the component functions of . F:

. ∇2
F =

{

∇2Fx ,∇2Fy,∇2Fz

}

.

To better understand the meaning of this operator, consider the function . f (x, y) =
sin(x) cos(y) + 2, whose graph is represented in Fig. 1.6 along with the vector field of

its gradient. In Fig. 1.7, only the gradient.∇ f is represented. Calculating the Laplacian

of . f (x, y) involves computing the divergence of the vector field of the gradient of

. f (x, y). Referring to the discussion above regarding divergence, the regions with

positive divergence (where vectors diverge) and the regions with negative divergence

(where vectors converge) are evident in Fig. 1.7.

Observing Fig. 1.6, it is noted that the regions with positive divergence of the

gradient correspond to a minimum of the function . f (x, y), while the regions with

negative divergence of the gradient correspond to a maximum of. f (x, y). The Lapla-

cian can therefore be thought of as the equivalent of the second derivative in the case

of a single-variable function in determining whether a point with zero first derivative

is a maximum or a minimum. In other words, the Laplacian provides the sign of

concavity and the “measure” of curvature.

Fig. 1.6 Representation of the function . f (x, y) = sin(x) cos(y) + 2 and the corresponding

gradient function

8 1 Preliminary Concepts

Fig. 1.7 Representation of

the gradient of the function

showed in Fig. 1.6

1.1.4 Curl

The curl is a differential operator indicated by the symbols .curl, rot , or .∇×. From a

mathematical perspective, the application of the curl differential operator to a generic

vector . b can be thought of as the cross product between the differential operator

.∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

and the vector . b:

. ∇ × b =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x1

∂

∂x2

∂

∂x3
b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

that is

. ∇ × b =
(

∂b3

∂x2
−

∂b2

∂x3

)

i +
(

∂b1

∂x3
−

∂b3

∂x1

)

j +
(

∂b2

∂x1
−

∂b1

∂x2

)

k

where i, j, k represent the unit vectors along the coordinate axes, and .bi represent

the component functions of the vector b. To better understand the physical meaning

of this differential operator, consider the velocity field of a fluid in motion in its

vector representation, as indicated in Fig. 1.8, where at a limited number of points,

the representative vector of the fluid velocity is drawn. In the same figure, circles

are drawn. Near the circle positioned on the positive x-semiaxis, the vector field

rotates counterclockwise; in this case, it is said that the curl is positive. Near the

circle positioned on the positive y-semiaxis, the vector field rotates clockwise: in

1.1 Differential Operators 9

Fig. 1.8 Vectorial

representation of a fluid

motion field

this case, it is said that the curl is negative. The circle positioned at the origin of the

axes is near four vectors oriented two by two clockwise and counterclockwise: in

this case, it is said that the curl is zero. The curl can therefore be interpreted as an

indicator of the extent to which particles tend to rotate around a point, clockwise or

counterclockwise, in a generic area of space. The derivation of the curl formula from

its physical meaning is simpler in the two-dimensional case. Let’s consider a vector

function b defined as:

. b(x, y) =
[

P(x, y)

Q(x, y)

]

where .P(x, y) is the function describing the behaviour of the component along the

x-direction of the function b, .Q(x, y) is the function describing the behaviour of

the component along the y-direction of the function b. Considering what has been

said about Fig. 1.8, to obtain a positive value of the curl and considering the area of

interest centred at the origin, the representative vectors of the function b should be

oriented as in Fig. 1.9. In particular, the two vectors positioned on the x-axis—on

the circumference centred at the origin of Fig. 1.8—would not have any component

along the same axis, and therefore the vector function b would reduce to only the

value of the scalar function. Q; in this case, the derivative of.Q with respect to. x would

be positive because it would change from a negative value at negative abscissas to a

positive value at positive abscissas. Correspondingly, the derivative of. P with respect

to . y would be negative. Expressing what is represented in Fig. 1.9 into mathematical

formulas, the curl can be defined as:

10 1 Preliminary Concepts

Fig. 1.9 Components of

vector function b near the

origin

. curl b =
∂Q

∂x
−

∂P

∂y

where the negative sign is inserted to ensure that the curl is positive (i.e., counter-

clockwise rotations) when the derivative of. P with respect to. y is negative. Assuming

the vector field shown in Fig. 1.8 to be described by the vector function

. b(x, y) =
[

P(x, y)

Q(x, y)

]

=
[

y3 − 9y

x3 − 9x

]

,

the curl is

.curl b =
∂Q

∂x
−

∂P

∂y
= 3x2 − 9 −

(

3y2 − 9
)

= 3x2 − 3y2. (1.2)

Willing to calculate the value of the curl at the point with coordinates.(x = 3, y = 0),

we obtain the value 27, which is consistent—in terms of sign—with the fact that,

referring to Fig. 1.8, the curl at the circumference centred at the point . (x = 3, y = 0)

has a positive sign. The same considerations apply to the value of the curl at the points

with coordinates .(x = 0, y = 3) and .(x = 0, y = 0). The vector field represented

in Fig. 1.8 can be depicted in a three-dimensional reference system, as shown in

Fig. 1.10. Using the right-hand rule, we can associate a direction and orientation to

the calculated curl value using Eq. 1.2, as illustrated in the same Fig. 1.10. It is now

possible to redefine the function b as

.b(x, y, z) =

⎡

⎣

P(x, y, z)

Q(x, y, z)

R(x, y, z)

⎤

⎦ =

⎡

⎣

y3 − 9y

x3 − 9x

0

⎤

⎦ .

1.1 Differential Operators 11

Fig. 1.10 Representation of the vector function b (vectors parallel to the xy-plane) together with

its corresponding curl (vectors parallel to the xz-plane)

Fig. 1.11 Representation of

the vector function b

redefined

For each value of the z-coordinate, this function will be equal to itself, as shown in

Fig. 1.11. The curl of this function will be the three-dimensional vector function:

.curl b(x, y, z) =

⎡

⎣

0

0

3x2 − 3y2

⎤

⎦ (1.3)

whose representation consists of all parallel vectors, as shown in the Fig. 1.12. In

conclusion, referring to the analogy that associates the motion of a fluid with the

vector field under consideration, the curl provides a measure of the intensity with

12 1 Preliminary Concepts

Fig. 1.12 Representation of

the curl of the function b

redefined

which the fluid rotates around the generic point considered, while also indicating the

direction along which this rotation occurs through the use of the right-hand rule.

1.1.5 Vector and Tensor Notation

Here, we assume to be in an orthogonal Cartesian coordinate system . (O, x1, x2, x3)

or equivalently .(O, x, y, z), where the axes are identified by the unit vectors .i, j,k.

In both notations, a generic scalar quantity (e.g., pressure, temperature, turbulent

kinetic energy, etc.) will always be indicated by a symbol without subscripts (for

example, . φ). A vector quantity (e.g., velocity) will be indicated using:

• a bold symbol in vector notation; for example, . a, being .a = ax i + ayj + azk;

• a symbol with a single subscript in tensor notation; for example, .ai , i = 1, 2, 3,

being .ai = ax i + ayj + azk.

As seen above, the gradient of a scalar function . φ is a vector expressible:

• in vector notation as .∇φ, with .∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k;

• in tensor notation .

∂φ

∂xi
, with .

∂φ

∂xi
=

∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k.

The dot product of two vectors. a and. b—giving a scalar as result—can be expressed:

• in vector notation as .a · b, with .a · b = a1b1 + a2b2 + a3b3;

• in tensor notation as .a jb j with .a jb j = a1b1 + a2b2 + a3b3.

1.1 Differential Operators 13

Note that, for tensor notation, the Einstein notation or Einstein summation convention

has been used. It is a convention for summing over repeated indices: each index that

appears more than once in a term is summed over all possible values it can take. In

this specific case, the notation .a jb j indicates the following summation

.

3
∑

j=1

a jb j .

Here, the subscript . j has been used instead of the subscript . i to emphasise the need

for a subscript whose symbol can be chosen arbitrarily. Consistently,.aibic j indicates

the summation:

.

3
∑

i=1

aibic j = a1b1c j + a2b2c j + a3b3c j .

Finally, in the case of two indices, both repeated, as for example .aibi jc j , it is:

. aibi jc j ≡
3
∑

j=1

3
∑

i=1

aibi jc j =
3
∑

i=1

aibi1c1 +
3
∑

i=1

aibi2c2 +
3
∑

i=1

aibi3c3 =

= (a1b11c1 + a2b21c1 + a3b31c1) + (a1b12c2 + a2b22c2 + a3b33c2)

+ (a1b13c3 + a2b23c3 + a3b33c3) .

It has been previously seen that the divergence of a vector . a is a scalar quantity.

Considering the symbolic vector nabla defined as .∇ = (∂/∂x, ∂/∂y, ∂/∂z), the

divergence of a vector can be written:

• in vector notation as .∇ · a being .∇ · a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
;

• in tensor notation as .
∂a j

∂x j

, being .

∂a j

∂x j

=
3
∑

j=1

∂a j

∂x j

.

The vector (or cross) product of two vectors . a and . b can be written:

• in vector notation as .a × b, being

.c = a × b =

∣

∣

∣

∣

∣

∣

i j k

ax ay az
bx by bz

∣

∣

∣

∣

∣

∣

=
(

aybz − azby
)

i + (azbx − axbz) j +
(

axby − aybx
)

k

= c1i + c2j + c3k;

14 1 Preliminary Concepts

• in tensor notation as .ci = ǫi jka jbk , meaning

. c1 =
3
∑

j=1

3
∑

k=1

ǫ1 jka jbk; c2 =
3
∑

j=1

3
∑

k=1

ǫ2 jka jbk; c3 =
3
∑

j=1

3
∑

k=1

ǫ3 jka jbk .

Here, the third-order tensor (i.e., a three-dimensional matrix) .ǫi jk—known as the

Levi-Civita tensor—has been introduced. Its elements are defined as follows:

. εi jk =

⎧

⎪

⎨

⎪

⎩

+1 i f (i, j, k) is an even permutation, i.e., (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1 i f (i, j, k) is an odd permutation, i.e., (3, 2, 1), (1, 3, 2), (2, 1, 3)

0 i f the two indices coincide : i = j and/or j = k and/or k = i

Recalling that a permutation is a way of arranging distinct objects in sequence

(in this case, numbers), it’s worth mentioning that by “even permutations,” it is

meant permutations obtained with an even number of transpositions, while “odd

permutations” refer to those obtained with an odd number of transpositions. By

“transposition,” it is meant the exchange of two elements that are not necessarily

adjacent, and zero is considered even. Considering the permutations of (1, 2, 3),

we have:

– ‘123’ is an even permutation because it is obtained with zero transpositions;

– 123 .→ ‘213’ is an odd permutation because it is obtained with a single

transposition: the exchange of 1 and 2;

– 123 .→ 213 .→ ‘231’ is an even permutation because it is obtained with two

transpositions: the exchange of 1 and 2, and the exchange of 1 and 3.

The curl of a vector can be expressed as the vector symbol nabla cross the vector

itself:

• in vector notation

. ∇ × a =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
ax ay az

∣

∣

∣

∣

∣

∣

∣

∣

=
(

∂az

∂y
−

∂ay

∂z

)

i +
(

∂ax

∂z
−

∂az

∂x

)

j +
(

∂ay

∂x
−

∂ax

∂y

)

k;

• in tensor notation, the i-th component will be .ǫi jk
∂a j

∂xk
, whose explicit meaning is

.

3
∑

j=1

3
∑

k=1

ǫi jk
∂a j

∂xk
.

A second-order tensor is represented in vector notation with a bold symbol, such

as . Ŵ, while in tensor notation it is represented as .Ŵi j . The product of a second-order

tensor . Ŵ with a vector . a—resulting in a vector—is represented as follows:

1.1 Differential Operators 15

• in vector notation as .Ŵ · a;

• in tensor notation as .Ŵi ja j , whose explicit meaning is: .

3
∑

j=1

Ŵi ja j , that indicates

the matrix-vector multiplication rule.

1.1.6 Gauss (or Divergence or Ostrogradskij) Theorem

This theorem states that the flux (see Sect. 2.8) of a vector field a passing through a

closed, piecewise smooth surface .∂V is equal to the integral of the divergence of a

over the region .V bounded by .∂V . In symbols:

.

∮

∂V

a · dS =
∫

V

∇ · a dV

where .dS = ndS is the product of the unit normal vector to the surface element and

the area .dS of that element. In other words, the divergence of a vector field a for

a finite region .V in space is equal to the sum of the fluxes leaving the infinitesimal

surfaces into which the volume bounding surface.∂V can be divided. To calculate the

value of the divergence associated with a specific point, one just needs to consider a

very small volume, tending towards zero, to obtain

. ∇ · a = lim
V→0

1

V

∮

∂V

a · dS.

The physical interpretation of this theorem identifies the integral of the divergence

of a over the region .VP bounded by .∂VP with the rate of accumulation of the same

vector field a inside the region .VP . Referring to Fig. 1.2, the divergence of a flow

field will quantify the divergent part of the motion, extracting it from the general

motion expression. In its generalised form, this theorem is expressed as

.

∮

∂V

n⋆a dS =
∫

V

∇⋆a dV

where the symbol .⋆ refers to any form of product—scalar .a · b, vector .a × b, or

tensor .ab—to which will correspond, in the volume integral the operator .∇·, .∇×, . ∇
respectively.

16 1 Preliminary Concepts

1.2 Fluid Mechanics

1.2.1 Strain Rate Tensor

Unlike solid mechanics, where strain (displacement per unit length) is a fundamental

concept, in fluid mechanics, it is appropriate to use the concept of strain rate rather

than strain because there is an equilibrium relationship between fluid stress and strain

rate. In continuum mechanics, the strain rate tensor is a physical quantity describing

the rate of deformation of a material around a point at a given instant. The strain rate

tensor can also be interpreted as the time derivative of the strain tensor, or alternatively

as the symmetric part of the gradient tensor of the velocity field describing a moving

fluid.

The strain rate tensor is a purely kinematic concept that describes the macroscopic

motion within a material regardless of its physical state (solid, liquid, or gas), forces

or stresses acting on it. The presence of deformation variations, i.e., a non-zero strain

rate tensor, leads to the emergence of forces due to friction between adjacent material

elements. These forces are described at each point by the strain rate tensor together

with certain material-specific quantities.

Given a three-dimensional velocity field .v = (v1, v2, v3), or equivalently . v =
(vx , vy, vz), its gradient will be a second-order tensor (see Sect. 1.1.1):

. ∇v =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂vx

∂x

∂vy

∂x

∂vz

∂x

∂vx

∂y

∂vy

∂y

∂vz

∂y

∂vx

∂z

∂vy

∂z

∂vz

∂z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∂1v1 ∂1v2 ∂1v3

∂2v1 ∂2v2 ∂2v3

∂3v1 ∂3v2 ∂3v3

⎤

⎥

⎥

⎥

⎥

⎦

and, consequently, it will be

. J = (∇v)T =

⎡

⎢

⎢

⎢

⎢

⎣

∂1v1 ∂2v1 ∂3v1

∂1v2 ∂2v2 ∂3v2

∂1v3 ∂2v3 ∂3v3

⎤

⎥

⎥

⎥

⎥

⎦

the associated Jacobian matrix. To describe the kinematic behaviour of a fluid in the

neighbourhood of a point, it is possible to consider an infinitesimal volume element

such that the velocity within it can be approximated by a first-order Taylor expansion.

Without loss of generality, the centroid of the infinitesimal volume, defined as the

origin, can be considered as the point. Subject to the motion field represented by the

velocity vector . v, its centroid will move with velocity .vG , while a point . P , different

from . G, will move with velocity .vP because the velocity vector . v is a function of

1.2 Fluid Mechanics 17

both space and time. In the case where .P is in a neighbourhood of .G such that a

truncated Taylor series expansion to the first order is valid, it can be written

. vP = vG + (∇v)T · x

or, equivalently

. v = vG + J · x

in which the symbol . x represents the position vector of the generic point . P . Like any

matrix, the Jacobian matrix can also be decomposed into its symmetric part, defined

as

.E =
1

2

(

J + JT
)

with Ei j =
1

2

(

∂ jvi + ∂iv j

)

(1.4)

and its antisymmetric (skew) part defined as

. R =
1

2

(

J − JT
)

with Ri j =
1

2

(

∂ jvi − ∂iv j

)

which leads to writing the expression of the velocity of point .P as

. v = vG + E · x + R · x

being

. J = E + R with Ji j =
∂vi

∂x j

= ∂ jvi = Ei j + Ri j .

The antisymmetric part .R · x represents a rigid rotation of point .P around .G with

angular velocity .ω defined as

.ω =
1

2
∇ × v =

1

2

⎡

⎣

∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

⎤

⎦ . (1.5)

The quantity .∇ × v is called the rotational tensor of the velocity vector field . v,

or simply the vorticity tensor. Due to the antisymmetry of . R, it is .Ri j = −R j i . In

the case where the motion is completely described solely by the symmetric tensor,

it is referred to as irrotational motion. It’s worth noting that rigid rotation does not

alter the relative positions of points in space, hence the antisymmetric tensor . R

does not contribute to deformation. The only contribution to the rate of deformation

comes from the symmetric tensor . E, also known as the strain-rate tensor. Like any

other matrix, the strain-rate tensor . E can also be decomposed into its spherical or

hydrostatic part . S and its deviatoric part . D:

.E = S + D.

18 1 Preliminary Concepts

Defining the trace of a matrix as the sum of the elements along the main diagonal,

the spherical part is defined as

. S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

3
(E11 + E22 + E33) 0 0

0
1

3
(E11 + E22 + E33) 0

0 0
1

3
(E11 + E22E33)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1

3
tr(E)I

in which the symbol.tr(E) denotes the trace of the strain rate tensor. E and. I represents

the identity matrix. Alternatively, in tensor notation

. Si, j =
1

3

(

∑

k

∂kvk

)

δi j

in which the symbol .δi j (.δi j = 1 when .i = j , .δi j = 0 when .i �= j) is used. It is

observed that the deviatoric part can be seen as the scalar sum of the main diagonal

elements of . E multiplied by the identity tensor represented by the Kronecker delta;

the deviatoric part represents the deformation that causes isotropic volume change

(expansion/contraction) and is therefore called the rate of dilatation tensor. Notice

that the trace of the rate of dilatation tensor coincides with the divergence of the

velocity vector field . v and therefore represents the rate of change of volume per unit

time, i.e., the rate of volume change. The deviatoric part, called the rate of shear

tensor, is defined as

. D = E − S = E −
1

3
tr(E)I

or, alternatively

. Di, j =
1

2

(

∂iv j + ∂ jvi
)

− Si j =
1

2

(

∂iv j + ∂ jvi
)

−
1

3

(

∑

k

∂kvk

)

δi j .

Since . E is a symmetric tensor, so is . D, representing deformations that, overall, do

not cause volume changes. In conclusion, the motion of point .P will be the sum of:

• a translation with the velocity of the particle’s centroid . G;

• a rigid rotation described by the tensor . R;

• a deformation due to isotropic volume change described by the tensor . S;

• a deformation due to shear without volume change described by the tensor . D.

1.2 Fluid Mechanics 19

1.2.2 Q or Okubo-Weiss Criterion

This parameter is a scalar used mainly for visualisation purposes and, with reference

to Definition 1.5, is defined as

. Q = ωi jωi j − Si j Si j .

The parameter Q is positive in regions where vorticity is greater than the rate of

deformation, and vice versa; it approaches zero near the walls.

1.2.3 Stress Tensor

By definition, stress is a force per unit area. On any surface where a force acts, an

associated stress vector can also be defined. As in the case for the strain-rate tensor,

the purpose of the stress-tensor is to uniquely define the stress state at every point in a

flow field. As it will be clearer when reading Sect. 2.5, applying Newton’s second law

to an infinitesimal control volume within the considered continuum medium leads to

a second-order tensor called the stress tensor, which can be indicated by the symbol. P

in vector notation or by the symbol.pi j in tensor notation. The stress tensor can also be

interpreted as a mathematical operator: considering an infinitesimal oriented surface

identified by the vector .dS = dSn, applying the stress tensor to the unit normal unit

vector . n, results in the stress (force per unit area) . f acting on the surface element

considered. In vector notation, this is expressed as .f = P · n; in tensor notation, it is
represented as . fi = pi jn j .

To better understand the importance of the stress tensor, let’s consider an infinites-

imal oriented surface with its normal coinciding with the. j unit vector of the Cartesian

coordinate system. Applying the stress tensor to the . j unit vector yields the stress

(with its three components) acting on the infinitesimal surface element belonging to

the .xz plane with normal . j. In formulas:

. f (y) =

⎡

⎣

p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤

⎦

⎡

⎣

0

1

0

⎤

⎦ =

⎡

⎣

p12
p22
p32

⎤

⎦ .

Notice that the stress acting on the infinitesimal surface element belonging to the . xz

plane corresponds to the second column of the stress tensor. In general:

• the stress vector acting on infinitesimal surfaces belonging to a plane with the unit

normal vector . n is represented by the .n-th column of the stress tensor . P;

• the .m-th component of the stress acting on infinitesimal surfaces belonging to a

plane with the normal vector . n is represented by the element .pi j of the stress

tensor.

20 1 Preliminary Concepts

At this point, it is clear that the columns of the stress tensor are an ordered sequence of

the stresses acting on infinitesimal surface elements lying on planes having as normal

unit vector the unit vectors of the considered Cartesian coordinate system. Even

though forces or stresses are measurable on actual solid surfaces, here the interest is

on “virtual” surfaces interior to the flow field. For every possible orientation of the

virtual surface, there is a different stress vector that describes the forces exerted by the

flow on the surface. Aiming at a unique representation of the stress state at a point in

a flow, the stress vector is not sufficient to represent it. However, the stresses on three

mutually orthogonal differential surfaces can represent the stress state uniquely. The

three vectors that describe the stress on these surfaces are represented as a tensor. The

nine particular numbers that comprise the tensor depend on the coordinate system in

which the tensor is represented.

1.2.4 Constitutive Equations

If, in the case of solids, the constitutive equations represent the relationship between

the components of the stress tensor and the deformations with respect to the unde-

formed configuration, in the case of fluids, the constitutive equations represent the

relationship between the components of the stress tensor and the components of the

rate of deformation tensor, which coincide with the spatial derivatives of the velocity

vector components. Since, generally, for a fluid, when the velocity is zero, the shear

stresses are zero while the normal stresses can still be non-zero, we proceed to break

down the stress tensor into its spherical part and its deviatoric part as shown below:

.

⎡

⎣

p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤

⎦ =

⎡

⎣

−p 0 0

0 −p 0

0 0 −p

⎤

⎦+

⎡

⎣

p11 + p p12 p13
p21 p22 + p p23
p31 p32 p33 + p

⎤

⎦ (1.6)

In which . p is the thermodynamic pressure, defined as the negative of the mean value

of the normal stresses in the three coordinate directions: in tensor notation . p = − pkk
3

(implicit summation notation is used). The negative sign is a matter of convention:

a positive pressure is usually understood to be compressive (i.e. inward directed),

whereas a positive normal stress is taken to be tensile (i.e. outward directed). Hence

the need for the negative sign. The Eq. 1.6 in tensor notation becomes:

. pi j = −pδi j + (pi j + pδi j) = −pδi j + τi j .

The tensor .τi j = pi j + pδi j is the deviatoric part of the stress tensor and is called the

viscous stress tensor by construction, characterized by having zero trace (.τi i = 0).

It will be:

1.2 Fluid Mechanics 21

. τ11 = p11 −
p11 + p22 + p33

3
, τ22 = p22 −

p11 + p22 + p33

3
,

τ33 = p33 −
p11 + p22 + p33

3

and therefore

. τ11 + τ22 + τ33 = 0.

.τ11, τ22 and .τ33 are the deviatoric normal stresses, meaning the fluid-mechanical

normal stress plus the thermodynamic pressure. Being related only to fluid motion,

the deviatoric stress tensor is zero for a fluid at rest. Referring to Sects. 2.5 and

2.5.1, although viscous stresses are generally tangential in nature, normal viscous

stresses (.τi i = pi i + p) can take non-negligible values. For Newtonian fluids, the

Stokes hypothesis 1 holds. Based on the Stokes hypothesis, the deviatoric part (i.e.,

that with zero trace) of the stress tensor is proportional to the deviatoric part of the rate

of deformation tensor by a constant of proportionality . μ, called dynamic viscosity.

Referring to Sect. 1.2.1 and using tensor notation, this relationship can be expressed

as:

. pi j −
1

3
δi j pkk = 2μ

(

Ei j −
1

3
δi j Ekk

)

equivalent to

. τi j = 2μDi j

Observing that the trace of the rate of deformation tensor is equal to the divergence

of velocity (.Ekk = ∇ · v), we can write:

. τi j = 2μ

(

Ei j −
1

3
δi j∇ · v

)

and, for incompressible flows (see Eq. 1.4)

. τi j = 2μEi j = μ
(

∂ jvi + ∂iv j

)

This is the three-dimensional generalization of the well-known Newton’s law of vis-

cosity, expressing the proportionality, via dynamic viscosity (. μ), between the viscous

shear stress and the velocity gradient when the velocity has only one component . u

(along the .x-axis) and varies only in the direction orthogonal to the axis along which

it is defined (along the .y-axis). In formula: .τ = μ∂u/∂y.

1 George Gabriel Stokes, On the theories of the internal friction of fluids in motion and of the

equilibrium and motion of elastic solids, Cambridge, Trans. Cambridge Philos. Soc., 8, 287–319,

1845.

22 1 Preliminary Concepts

1.3 Differential Equations with Physical Applications

1.3.1 Generalities on Partial Differential Equations

A differential equation is an equation involving one or more derivatives of an

unknown function. If all the derivatives are taken with respect to a single inde-

pendent variable, it is called an ordinary differential equation (ODE), while it is

termed a partial differential equation (PDE) when derivatives with respect to multi-

ple independent variables are involved. The differential equation (whether ordinary

or partial) has order . n if . n is the maximum order of the derivatives appearing in it.

A partial differential equation generally has an unknown function . u(x1, x2, . . . , xr)

of . r independent variables and establishes a relationship among the independent

variables, the function . u, and its partial derivatives. Here, we will consider first- and

second-order equations. First-order equations are in the form:

. aux + bu y = f

while second order equations will be

. auxx + buxy + cu yy = f

where.a, b, c, f are functions of.x, y, u as well as they are functions of the first order

partial derivatives .ux , u y , and/or second partial derivatives .uxx , u yy in the case of

second order equations. In both cases, the equation is called linear if the coefficients

. a and. b (respectively.a, b, c) depend only on. x and. y, and. f is linear in. u (respectively

in .u, ux , u y); if the coefficients depend on .x, y, u, ux , u y , the equation is termed

quasi-linear. In the specific problems discussed here, often one variable, either . x , is

a spatial variable, the other is a temporal variable, and when this occurs, it will be

denoted by . t instead of . y. An integral or solution, in the classical sense, of a .n-th

order partial differential equation is a function . u that satisfies the equation in a given

connected open set . �, where . u is continuous with its derivatives up to the .n-th order.

If boundary or limit conditions are assigned on . Ŵ, the boundary of .� (or part of it),

then . u must be continuously differentiable on .� ∪ Ŵ up to the order required by the

conditions. The general integral is the totality of solutions. For ordinary differential

equations it makes sense to pose the problem of finding the general integral (i.e., the

set of all solutions). For partial differential equations the approach is different, and

usually, the more limited objective is to determine any solutions that satisfy some

additional conditions, which are generally those imposed at the boundary .Ŵ of . �

(boundary conditions). Being . c a positive constant, the following equations are of

common interest:

. ut + cux = 0, transport equation

.ut t − c2uxx = 0, waves equation

1.3 Differential Equations with Physical Applications 23

. uxx + u yy = 0, Laplace equation

. ut − cuxx = 0, heat equation.

A general property of the solutions of partial differential equations is that the general

integral depends on arbitrary functions rather than arbitrary constants, as is the case

of ordinary differential equations.

1.3.2 Mathematical Classification of Linear and Quasi

Linear Partial Differential Equations

For simplicity, we consider equations with only two variables.

. a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)u yy + b1(x, y)ux + b2(x, y)u y+
+ c(x, y)u = d(x, y) (1.7)

having the coefficients the necessary regularity.

The classification is based solely on the part containing the second order

derivatives:

. a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)u yy .

This part is termed principal part of the equation. The classification of Eq. 1.7 is

based on the sign of the discriminant .δ = a212 − a11a22 of the principal part:

• if .δ > 0 the equation is said to be hyperbolic;

• if .δ = 0 the equation is said to be parabolic;

• if .δ < 0 the equation is said to be elliptic.

Elliptic equations are those having .∇2u as principal part (Laplace, 2 Poisson 3); the

heat equation (and similar ones) are parabolic equations; the transport equation and

the wave equation are hyperbolic equations. Each type of equation corresponds to a

pair of sets of characteristic curves (see Sect. 1.3.3). In the case of hyperbolic equa-

tions, the characteristics are real and distinct, meaning that information propagates

with finite velocity along two specific sets of directions in the x-t plane. In the case

of parabolic equations, the two sets degenerate into a single set, and thus informa-

tion propagates with finite velocity along a single direction. In the case of elliptic

equations, the characteristic curves are not real, and there are therefore two distinct

sets of imaginary curves: there is no preferred direction, and information propagates

2 P.S. Laplace, Mémoire sur la théorie de l’anneau de Saturne, Paris, Mémoires de l’Académie

Royale des Sciences de Paris, 1787.
3 S.D. Poisson, Remarques sur un equation qui se presente dans la théorie des attractions des

spheroides, Paris, Nouveau bulletin des sciences: par la Société philomat(h)ique (de Paris), 1813.

24 1 Preliminary Concepts

instantaneously in all directions. The Navier–Stokes equations are second-order non-

linear partial differential equations that possess properties of each of the three types

of equations mentioned above. Considering a non-steady, inviscid, and compress-

ible flow, it is possible to observe sound waves and shocks, indicating distinctly the

hyperbolic nature of this type of flow. For supersonic steady compressible flows,

the nature will be hyperbolic. For subsonic steady compressible flows, the nature of

the equations will be mixed hyperbolic and elliptic. For incompressible flows, the

properties will resemble those specific to elliptic equations. Typically, flows do not

exhibit properties attributable to just one of the types of equations seen before. An

illustrative example in this regard is the case of steady transonic flows, which feature

both subsonic (elliptic) and supersonic (hyperbolic) regions.

1.3.3 Transport Equation

This equation is also known as the advection equation. The term advection and

the associated phenomenon are distinct from the term convection and its related

phenomenon, although they are often used interchangeably. Advection refers to the

movement of a certain quantity because it is immersed in a moving fluid, while

convection refers to the movement of a certain quantity because it is immersed in a

moving fluid generated by density gradients caused by thermal gradients. Considered

a generic quantity described by a scalar field u(x,y,z,t) and immersed in a velocity

field c, the corresponding advection equation is the following continuity equation:

.ut + ∇ · (uc) = 0. (1.8)

In the case of an incompressible flow, .∇ · c = 0, and the velocity field . c is said to be

solenoidal. For incompressible flows, Eq. 1.8 can be written as:

.ut + c · ∇u = 0. (1.9)

Unidimensional transport equation (also known as inviscid Burgers equation 4)

.ut + cux = 0 (1.10)

can be used to describe the pure transport of a quantity .u(x, t) carried out by a

solenoidal velocity field .c = (c, 0, 0). Below, a possible way to construct such an

equation will be illustrated (see also Sects. 2.4 and 2.8).

Figure 1.13 shows the curve representative of a quantity .u(x, t) as a function of x

for time.t = 0. Due to the velocity field. c, and being this a pure transport phenomenon,

the same curve will reappear at time .t = 1 but translated by an amount .�x = c�t ,

4 J.M. Burgers, A Mathematical Model Illustrating the Theory of Turbulence, Amsterdam, Elsevier,

1948.

1.3 Differential Equations with Physical Applications 25

Fig. 1.13 Transport of the

quantity . u in a velocity

field . c

where.�t denotes the time interval between.t = 0 and.t = 1. The same applies to the

transition from .t = 1 to .t = 2. It is possible to give an intuitive definition of a wave

as a sequence of motion fields resulting from the transport of a generic quantity with

a specific velocity. It can be observed that points characterised by the same value of

. u at different times all lie on a line. For each considered value of . u, there will be a

different line lying on a plane parallel to the .xt plane. The curves obtained from the

union of points characterised by the same value of . u are called characteristic curves.

These curves shape depends on the type of differential equation considered; in this

case, the characteristic curves are straight parallel lines described by the equation

.x − ct = x0. These characteristic curves form a family of curves. Considering t=0

and x(t=0)=x0, the corresponding u value is called invariant. Each invariant identifies

a single characteristic curve. The direction of propagation of information will be, in

this case, that of increasing . x .

Another interpretation of the characteristic curves is as follows. Considering a

continuous variation of time, the curves representing the spatial distribution of . u will

describe a surface, the trace of which at three time values is indicated by the curves

in Fig. 1.13. The directional derivative of this surface along the direction indicated

by the characteristic curves is always zero, due to the fact that the value of . u does

not change along the characteristic curves. In formulas, this concept translates into

setting equal to zero the dot product between the unit vector indicating the direction

of the characteristic curves (in the .xt plane) and the gradient of . u. Since this dot

product is zero, a vector can be considered instead of the unit vector, provided that

the direction does not change. In a unit time interval, the distribution of . u will be

translated by an amount .�x = c�t = c · 1 = c, and thus, a vector with the same

direction as the characteristic curves can be written as .(c, 1), while the gradient of . u

is .(ux , ut). In formulas:

. (c, 1) · (ux , ut) = 0 ⇒ ut + cux = 0

namely, the transport equation.

26 1 Preliminary Concepts

The general solution of the transport equation is

. u(x, t) = F(x − ct)

Here, .F is a generic function of which it is possible to compute the first derivative

considering that

. ut = −cux , ux =
∂F

∂x
.

Graphically, .F(x − ct) is obtained from .F(x) (the configuration at time .t = 0) by a

translation of magnitude .ct in the positive direction of the .x-axis.

The concept of the inviscid Burgers’ equation is also applicable when the velocity

field . c in which the scalar field .u(x, y, z, t) is immersed is non-solenoidal. In the

one-dimensional scenario, the inviscid Burgers’ equation can be expressed as:

.ut + uux = 0 (1.11)

where the velocity field. c and the transported quantity.u(x, t) coincide. Equation 1.11

represents the one-dimensional motion of an inviscid fluid moving with velocity

.u(x, t), not subject to external forces. From a physical point of view, it describes

the rectilinear uniform motion of individual portions of the fluid, which may have

different velocities from point to point. As will be further elucidated in Chapter

2, the Burgers’ equation can be considered as a simplification of the conservation

equation of momentum, considering only the terms of temporal derivative and advec-

tion. Specifically, Burgers’ equation is often used to examine the characteristics of

numerical discretisation schemes concerning the non-linear advective term .uux .

To grasp an idea of what Eq. 1.11 represents, one can envision a very narrow

corridor traversed by people lined up in a row one by one, each one at a constant

speed (no acceleration), and unable to overtake one another. The person who is at

position . x at time .t = 0 will move at a constant speed .u(x, 0). If .u(x, 0) is never

decreasing, there will be no collisions; in particular, if in some time interval.u(x, 0) is

increasing, meaning the people ahead are faster, they will move away from each other

(rarefaction). If, in some time interval, .u(x, 0) is decreasing, i.e., the people behind

are faster, collisions will eventually occur. In the case of inviscid Burgers’ equation,

the characteristic are curves that intersect in the case of collisions and diverge in the

case of rarefactions.

1.3.4 Wave Equation

Wave, or vibrating string, equation

.ut t = c2uxx (1.12)

1.3 Differential Equations with Physical Applications 27

has the following physical interpretation: given an elastic string, initially positioned

along the.x-axis at rest, the configuration is disturbed and the string allowed to vibrate.

Then, it can be shown that the normal displacement (along the .y-axis) .u(x, t) at the

instant . t and position . x is an integral of Eq. 1.12, whose general solution is

.u(x, t) = F(x + ct) + G(x − ct) (1.13)

with .F and .G being arbitrary functions for which it is possible to write the second

derivatives. Equation 1.13 expresses the fact that the motion of the string results

from the superposition of two waves travelling in opposite directions with velocity

. c. Similarly to what was seen with the transport equation, here part of the solution is

constant along the family of characteristics .x − ct = const and part along the family

.x + ct = const. In other words, while in the case of the transport equation, there is

only one characteristic passing through each point in the .xt-plane, in the case of the

wave equation, there will always be two characteristics passing through each point.

To better understand, let’s consider the following initial value problem, or Cauchy

problem. Given an infinitely long string with initial position and velocity known and

respectively given by

. u(x, 0) = f (x) − ∞ < x < ∞

and

.

∂u(x, 0)

∂t
= g(x) − ∞ < x < ∞,

find the general solution of wave Eq. 1.12. It can be shown that the solution to this

problem is given by the D’Alembert 5 formula

.u(x, t) =
1

2
[f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g(z)dz. (1.14)

This formula expresses the dependence on two factors of the value of . u at a generic

point .P(x∗, t∗):

1. the mean value of . u in correspondence of the points .A(x∗ − ct∗, 0) and . B(x∗ +
ct∗, 0): this is the term .

1
2
[f (x + ct) + f (x − ct)] of Formula 1.14 with . x = x∗

and .t = t∗;

2. the mean string velocity value in .[A, B]: this is the term . 1
2c

∫ x+ct

x−ct
g(z)dz of

Formula 1.14 with .x = x∗ and .t = t∗.

From what has just been said, it follows that, considering a generic point .P(x∗, t∗),

the solution at . P depends only on the values of . u in the interval .I = [A, B], referred
to as the dependence interval of point . P . Considering the Fig. 1.14, the triangle

5 Jean-Baptiste Le Rond d’Alembert, Research on the vibrating strings, Berlin, History of the Royal

Academy of Berlin, 1747.

28 1 Preliminary Concepts

Fig. 1.14 Interval and

domain of dependence

bounded by the interval . I and by the two characteristic lines passing for . P , is called

the continuous dependence domain of point . P . Data on . I uniquely determine the

solution only in .T 1.

On the other hand, the influence domain of .P is defined by the triangle . T 2

bounded by characteristic lines passing through . P . It is so called because the value

of the solution at .P influences the solution at all points in .T 2. Figuratively, it can be

said that an observer located in .x∗ at time . t∗—the point . P—feels the effects of what

happened in .T 1, but not of what happens outside of .T 1, and at the same time, the

effect of a disturbance at .P can only be felt in the domain .T 2.

It is useful to specify here that the term domain of dependence or influence refers

to the .xt plane; when referring only to spatial coordinates, we will speak of zone of

dependence or influence. In the case of the transport equation seen in Sect. 1.3.3, the

zone of dependence is constituted by the points on the .x-axis already affected by the

passage of the disturbance relative to the considered time; the zone of influence is

constituted by the points on the .x-axis not yet affected by the passage of the distur-

bance relative to the considered time. In the case of the wave equation represented

in Fig. 1.14, at the time corresponding to point . P , the dependence zone will be the

interval . I while the influence zone will be the entire .x-axis.

1.3.5 Heat Equation

The heat equation describes the transport of thermal energy between particles at

different temperatures (the same equation also governs, for example, the chemical

concentration of different species present in the same domain of interest). The heat

equation is also known as equation of transport by pure diffusion because it describes

the evolution of a generic quantity due solely to the phenomenon of diffusion.

The law of Fourier 6

. f = −k∇T

6 Jean-Baptiste Joseph Fourier, The analytical theory of heat, translation by Alexander Freeman,

London, Cambridge University Press, 1878, ed. or.: Théorie analytique de la chaleur, Paris, Didot,

1822.

1.3 Differential Equations with Physical Applications 29

describes the heat flux . f as a function of the thermal conductivity coefficient . k and

the temperature . T . The minus sign indicates that thermal energy naturally moves

from zones of higher temperature to zones of lower temperature. Here, it is useful

to recall the definition of specific heat as the amount of energy (or heat) required to

raise or lower the temperature of a given mass or volume of the substance by one

unit. When this temperature change is achieved through an isobaric process, it is

referred to as the specific heat at constant pressure, denoted by the symbol . cp.

Considering a control volume . V , the expression of the conservation equation for

thermal energy .E is given by

.

∫

V

∂E

∂t
dV +

∮

∂V

k∇T · dS = 0.

From this, considering an infinitesimal one-dimensional element and thermal energy

stored solely as enthalpy (.E = ρcpT), we obtain the differential form of the heat

equation:

.

∂T

∂t
+

k

cpρ

∂2T

∂x2
= 0, (1.15)

assuming . k and .cp not depending on temperature.

In the case where there are no variations in temperature over time, Eq. 1.15 can

be written as:

.∇2T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 (1.16)

also named Laplace equation. 7 By replacing temperature with velocity in Eq. 1.16,

one would obtain the conservation equation for momentum (2.24) in the case where

diffusion is the only cause of momentum variation. If there is a source term present

in Eq. 1.16, for example due to chemical reactions, we would obtain the Poisson

equation 8:

. ∇2 T = s.

As shall be elaborated in more detail in Sect. 6.4.1, the Poisson equation, with its

elliptic nature, will be used as the pressure correction equation in segregated solution

algorithms.

7 Pierre-Simon de Laplace, Théorie des attractions des sphéroïdes et de la figure des planétes Paris,

Gauthier-Villars, 1782.
8 Siméon Denis Poisson, Remarques sur une équation qui se présente dans la théorie des attractions

des sphéroïdes, Nouveau bulletin des sciences: par la Société philomat(h)ique (de Paris), Paris, J.

Klostermann fils, t. III, n.75, Dec. 1813, pp. 388–392.

30 1 Preliminary Concepts

1.4 Gasdynamics

1.4.1 Mechanical Waves

A wave is a disturbance that originates from a source and propagates through time

and space, carrying energy or momentum. Mechanical waves are those that propagate

exclusively through material media other than vacuum. The medium through which a

wave propagates can be thought of as being composed of infinitely small oscillators,

each oscillating with its own phase and amplitude to form a wave. Fundamental

characteristics of a wave include the following quantities:

• amplitude: it is the maximum displacement from the undisturbed position;

• frequency: it is the number of complete oscillations per unit time. The unit of

measurement in the International System is the hertz (Hz), dimensionally equiv-

alent to the inverse of time (.1 Hz = 1 s−1). It is also referred to as the angular

frequency, denoted by .ω and expressed in terms of frequency . f as .ω = 2π f .

Angular frequency is measured in radians per second (.rad/s).

• wavelength: it is the distance between two crests or two troughs of the wave. It is

measured in meters and denoted by the symbol . λ.

• wave number: for wavelength, it is what angular frequency is for frequency. It is

denoted by the symbol. k and expressed in terms of wavelength. λ as.k = 2π/λ. The

wave number is measured in radians per meter (.rad/m) or simply as the inverse of

a length, given that radians have no dimension.

• wave velocity: The simplest form of wave velocity is the phase velocity, defined

as the speed of propagation of points of the wave shape characterised by constant

phase, such as the velocity at which a crest moves. Wave shape is the profile

generated, on a Cartesian plane, by the measurement of a signal with respect to

two quantities, for example time and displacement, that characterise it. The time

taken by a crest to travel a distance equal to a wavelength . λ is .t = λ/c, where . c is

the phase velocity of the wave. In the time interval. t , a point on the wave completes

one full cycle of oscillation, so .t = 1/ f . Therefore, it can be written that .c = f λ.

Considering the direction of oscillation motion relative to the direction of propa-

gation, and with reference to Figs. 1.15 and 1.16, waves can be distinguished as

follows:

• Transverse waves: in this type, the oscillatory motion occurs in a direction per-

pendicular to the overall direction of wave propagation. Examples of transverse

waves include those propagating on guitar strings and other stringed instruments;

• Longitudinal waves: in this type, the oscillatory motion occurs in a direction par-

allel to the overall direction of wave propagation. Examples of longitudinal waves

include pressure waves in a gas, where the pressure gradient created by the wave

passage is parallel to the direction of propagation;

• Mixed waves: in this type, the oscillatory motion occurs in all directions. A typical

example of this type of wave is ocean waves, which propagate at the interface of

1.4 Gasdynamics 31

Fig. 1.15 Longitudinal (up)

and transverse (bottom)

waves

Fig. 1.16 Mixed waves

two fluids with different densities (in this case, water and air). In this case, there

is a resultant circulatory motion resulting from the composition of the transverse

and longitudinal components of the oscillation.

1.4.2 Acoustic Waves Equation

Acoustic waves are mechanical longitudinal waves and, as such, can be represented as

a function of the displacement from the equilibrium position of the medium through

which they propagate. Specifically, acoustic waves can also be represented as pressure

waves.

32 1 Preliminary Concepts

1.4.3 One-Dimensional Pressure Waves

For simplicity, let’s consider the motion of a fluid element restricted only to the

. x direction. Figure 1.17 illustrates the variation of absolute pressure .P on the two

.x-normal faces, while Fig. 1.18 illustrates the variation of the .x-component . u of

velocity on the two corresponding faces of the fluid element. Both pressure and

velocity are functions of space and time: .P(x, t) and .u(x, t). The component along

the . x direction of the total force due to the pressure acting on the fluid element at a

given time . t is given by the difference in pressure acting on the two .x-normal faces.

Considering that the variation of pressure along the . x direction at a fixed time . t is

given by the partial derivative of. P with respect to. x , the pressure difference between

the two .x-normal faces will be:

. δP =
∂P

∂x
δx

Fig. 1.17 Pressure acting on

two fluid element faces

Fig. 1.18 Deformation of a

fluid element due to the

different velocities of its two

surfaces

1.4 Gasdynamics 33

in which, to indicate that the variations are small, the symbol . δ has been used rather

than the symbol . �. Consequently, the component along the .x-direction of the total

force due to the pressure acting on the fluid element will be

. δFx = −
∂P

∂x
δxδyδz

where the minus sign is introduced to account for the fact that an increase in pressure

with increasing . x results in a force opposite to the direction of increasing . x .

The change in velocity .u(x, t) with respect to time at a particular value of . x (i.e.,

.∂u/∂t) is the component along . x of the acceleration. Applying the second law of

Newton .Fx = max to the fluid element, we obtain

. −
∂P

∂x
δxδyδz = ρδxδyδz

∂u

∂t

being .ρδxδyδz the mass in the fluid element. Or, equivalently

.

∂P

∂x
= −ρ

∂u

∂t

∣

∣

∣

∣

x

. (1.17)

When the fluid element is crossed by the pressure wave, its two .x-normal faces

will be characterised by different velocities as shown in Fig. 1.18. The fluid element

will therefore undergo a change in volume, for which it is necessary to consider the

definition of the modulus of compressibility . B (see also Sect. 1.4.5):

.B = −
�P

�V/V0

(1.18)

where .�P is the change in pressure, .�V is the change in volume, .V0 is the undis-

turbed volume. Here too, to indicate that the variations are small, the symbol . δ will

be used instead of the symbol . �.

The difference in velocity of the two .x-normal faces can be expressed as

. δu =
∂u

∂x

∣

∣

∣

∣

t

δx

that is, the change in velocity along the coordinate . x at a fixed moment in time

multiplied by the thickness .δx of the fluid element. This difference in velocity cor-

responds to a change in length over the time interval . δt , which is equal to .δuδt , and

consequently a change in volume equal to

.δV =
∂u

∂x

∣

∣

∣

∣

t

δxδyδzδt.

34 1 Preliminary Concepts

Given .V0 = δxδyδz, we have

.

δV

V0

=
∂u

∂x

∣

∣

∣

∣

t

δt.

Now, we can revisit Formula 1.18 to write

. δP = −B
δV

V0

= −B
∂u

∂x

∣

∣

∣

∣

t

δt

thus

.

δP

δt
= −B

∂u

∂x

∣

∣

∣

∣

t

.

For .δt approaching zero

.

∂P

∂t
= −B

∂u

∂x

∣

∣

∣

∣

t

. (1.19)

The partial derivative symbol is used because pressure .P is a function of both . x and

. t , and in this case, we are considering the variation over time for a fixed value of . x .

Equations 1.17 and 1.19 are two expressions that relate the variation in pressure to

the variation in velocity. To obtain a single equation from these, we can differentiate

Eq. 1.17 with respect to . x to get:

.

∂2P

∂x2
= −ρ

∂u

∂x∂t

and differentiate Eq. 1.19 with respect to . t to get

.

∂2P

∂t2
= −B

∂u

∂t∂x
.

Remembering that

.

∂u

∂x∂t
=

∂u

∂t∂x
,

the pressure equation in terms of absolute pressure .P is:

.

∂2P

∂x2
=

ρ

B

∂2P

∂t2
.

This relationship also holds when considering the difference .p(x, t) between the

absolute pressure. P and the pressure.P0 of the medium under undisturbed conditions:

.p(x, t) = P(x, t) − P0.

1.4 Gasdynamics 35

In this case

.

∂2 p

∂x2
=

ρ

B

∂2 p

∂t2
.

1.4.4 Acoustic Waves Described by Displacement

from the Equilibrium Position of the Transmitting

Medium

For simplicity, we consider the motion of a fluid element restricted to the . x direction.

Referring to Fig. 1.17 and denoting the displacement of the transmitting medium in

time and space by the symbol .φ(x, t), the velocity of each point of the transmitting

medium can be expressed as:

. u(x, t) =
∂φ(x, t)

∂t
.

Remembering the Formula 1.17, it is possible to write

.

∂P

∂x
= −ρ

∂u

∂t
= −ρ

∂2φ

∂t2
=

∂ p

∂x
. (1.20)

Referring to Fig. 1.19, the change in volume of the fluid element as a function of

displacement can be expressed as:

. δV = δyδz [φ(x + δx, t) − φ(x, t)] .

Consequently,

.

δV

V0

=
[φ(x + δx, t) − φ(x, t)]

δx

being.V0 = δxδyδz the initial volume of the fluid element. Considering the definition

of bulk modulus expressed by Eq. 1.18, it is clear that we are observing the change

Fig. 1.19 Fluid element

volume variation as a

function of displacement

36 1 Preliminary Concepts

of volume (relative to the undisturbed value) when varying the pressure from the

undisturbed value (.P0) to the value .p + P0. In other words we are observing the

change of volume caused by the pressure change .�P = p. Consequently, from

Eq. 1.18, we can write:

. p = −B
δV

V0

= −B
[φ(x + δx, t) − φ(x, t)]

δx

and, considering . δx → 0

. p = −B
∂φ

∂x

which, derived with respect to . x gives

.

∂ p

∂x
= −B

∂2φ

∂x2
.

Remembering Eq. 1.20, it is possible to delete the pressure term to write the equation

of displacement wave

.

∂2φ

∂x2
=

ρ

B

∂2φ

∂t2
.

It is noted that the displacement wave has a phase velocity .

√
B/ρ equal to that of the

pressure wave. The solution of the displacement wave equation turns out to be:

. φ(x, t) = Aei(kx−ωt)

as a consequence, the solution of the pressure equation is

. p(x, t) = −B
∂φ

∂x
= −ikBAei(kx−ωt) = kBAei(kx−ωt)−π/2.

Therefore, the pressure is observed to have a phase shift of .π/2 compared to the

displacement, which means that the pressure reaches its maximum when the dis-

placement of the transmissive medium is zero. This behaviour is counterintuitive

when compared to the behavior of a simple mass-spring system, where the force is

maximum when the displacement from the equilibrium position is maximum.

1.4.5 Bulk Modulus

An element of material subject to limited stresses of compression, tension, or shear,

strains while maintaining its volume constant. When immersed in a fluid, the material

element will be subjected to a pressure field acting on each of its faces (see Fig. 1.20),

exerting a force normal to the face. Due to these stresses (also known as bulk stress),

1.4 Gasdynamics 37

Fig. 1.20 Fluid element

volume variation due to

pressure

the material element will deform uniformly (bulk strain) in every direction, resulting

in a change in volume of the material element itself. Denoting the initial volume of

the element by the symbol.V0, and the volume change by the symbol.�V , the volume

strain can be defined as:

. Bulk strain =
�V

V0

.

The bulk modulus .B can be defined as the proportionality coefficient between

pressure variation .�p the corresponding volume variation:

. B = −
�p

�V/V0

.

Here, the minus sign is necessary to obtain a positive value of .B in case of positive

pressure variation associated with volume decrease. Alternatively, it is possible to

define the bulk modulus as

. B = ρ
∂ p

∂ρ

in which . ρ is the density and . p the pressure.

Bulk modulus is also a thermodynamic quantity. Specifically, we define the

isothermal compressibility modulus .BT (in the case of constant temperature trans-

formation) and the isentropic compressibility modulus .BS (in the case of isentropic

transformation). In practice, this distinction is relevant only for gases, to a lesser

extent for liquids, and even less for solids. For an ideal gas, we define

. BS = γ p

where . γ is the adiabatic expansion coefficient (ratio between constant pressure and

constant volume heats).

38 1 Preliminary Concepts

1.5 Numerical Calculus

1.5.1 Taylor Series Expansion and Accuracy

A function .φ(x) that passes through a point .x0 and has all necessary derivatives at

that point, can be approximated, at the point .x0 by a polynomial (Taylor polynomial)

defined as follows:

. φk(x) = φ(x0) +
1

1!
φ′(x0)(x − x0) +

1

2!
φ′′(x0)(x − x0)

2

+
1

3!
φ′′′(x0)(x − x0)

3 + . . . +
1

k!
φ(k)(x0)(x − x0)

k .

Considering one point at a distance .�x from point . x0, it is possible to write

. φ(x0 + �x) = φ(x0) + �x

(

∂φ

∂x

)

x0

+
(�x)2

2!

(

∂2φ

∂x2

)

x0

+
(�x)3

3!

(

∂3φ

∂x3

)

x0

+ HOT (1.21)

having indicated by the symbol .HOT the higher-order terms.

The error incurred when the .HOT are not considered is called the truncation

error. Neglecting the .HOT , the error incurred is not greater than the value of the

first derivative that is neglected. In the case where the first neglected derivative is the

second-order derivative, the obtained value is said to be approximated to the second

order. Considering Fig. 3.2, given the value of . φ and its corresponding derivative at

point P, we can use the Taylor series expansion to obtain an approximate value of

the function . φ at point E:

. φE = φP + �PE

(

∂φ

∂x

)

P

+ HOT.

Equivalently, it is possible to use the Taylor series expansion to approximate the

function . φ value in e:

.φe = φP + �Pe

(

∂φ

∂x

)

P

+ HOT. (1.22)

By neglecting these last two terms of higher order, we obtain an expression accurate

to the second order for the behaviour of the considered quantity. In general, the term

“accuracy” refers to the difference between the exact and the calculated solution.

Since, in most practical cases, the exact solution is not available, we settle for con-

sidering the order of magnitude of the truncation error as a measure of accuracy.

In the case of discretisation of equations, the order of magnitude of the truncation

1.5 Numerical Calculus 39

error of the discretisation scheme is the highest among the orders of magnitude of

the truncation errors associated with each term of the equation. Note that in this

case, accuracy differs from truncation error providing only a measure of how much

the truncation error decreases as the size of the cells used for discretisation of the

computational domain decreases. Specifically, considering the one-dimensional case

of Eq. 1.22, we have an expression for .φe accurate to the second order, which means

that the truncation error will decrease by four times if the value of .�Pe is halved. It

is therefore clear that schemes with a higher order of accuracy can produce errors of

smaller order of magnitude for the same distances.

1.5.2 Mean Value Approximation

In the one-dimensional case, considering Eq. 1.21, the variation of a quantity . φ(x)

passing through a point P contained in a control volume .VP can be expressed as:

. φ(x) = φP + (x − xP)

(

∂φ

∂x

)

P

+
(x − xP)2

2!

(

∂2φ

∂x2

)

P

+
(x − xP)3

3!

(

∂3φ

∂x3

)

P

+ HOT.

Integrating over the control volume, one gets

.

∫

VP

φ(x)dV =
∫

VP

[

φP + (x − xP)

(

∂φ

∂x

)

P

+
(x − xP)2

2!

(

∂2φ

∂x2

)

P

+
(x − xP)3

3!

(

∂3φ

∂x3

)

P

+ HOT

]

dV .

Assuming that the variation law .φ(x) within the control volume is linear, all

derivatives of order higher than the second vanish:

.

∫

VP

φ(x)dV =
∫

VP

[

φP + (x − xP)

(

∂φ

∂x

)

P

]

dV .

If P is the control volume centroid, it is

.

(

∂φ

∂x

)

P

∫

VP

(x − xP)dV = 0

and so

.

∫

VP

φ(x)dV =
∫

VP

φPdV

40 1 Preliminary Concepts

namely

.

∫

VP

φ(x)dV = φPVP .

Lastly, considering the mean value definition, it is

. φ =
1

VP

∫

VP

φ(x)dV = φP

The statement asserts that the average value of the quantity .φ(x) within the control

volume .VP equals the value of the same quantity at the centroid of the control

volume if the variation of .φ(x) is linear or constant within the control volume .VP . If

the variation of .φ(x) is not linear or constant, a second-order accurate approximation

is obtained.

1.5.3 Derivatives Approximation

Given a function . f : [a, b] → ℜ continuously differentiable in an interval .[a, b], we
want to approximate its first derivative at a generic point . x in .(a, b). With reference

to Fig. 1.21, by definition, the first derivative at . x is:

. f ′(x) = lim
h→0

f (x + h) − f (x)

h
.

The value. f ′(x) provides the slope of the tangent to. f in. x . For values of. h sufficiently

small and positive, the quantity

.(δ+ f)(x) =
f (x + h) − f (x)

h
(1.23)

is called forward finite difference and it represents an approximation of . f ′(x).

Fig. 1.21 Finite difference

approximation . f ′(x):
backward (continuous line),

forward (dotted line) and

central (dashed line).

.m1 = (δ− f)(x),

.m2 = (δ+ f)(x) and

.m3 = (δ f)(x) represent the

gradient of the straight lines

1.5 Numerical Calculus 41

Considering the Taylor series expansion

. f (x + h) = f (x) − h f ′(x) + HOT,

a first order accurate approximation of . f ′(x) is:

.(δ− f)(x) =
f (x) − f (x − h)

h
(1.24)

named backward finite difference. Lastly, the central difference is defined as

. (δ f)(x) =
f (x + h) − f (x − h)

2h

and it is second order accurate.

1.5.4 Explicit and Implicit Methods

This subsection deals with the resolution of the so-called Cauchy problems, namely

problems of the form: find .y : I ⊂ ℜ → ℜ so that

.

{

y′(t) = f (t, y(t)) ∀t ∈ I

y(t0) = y0
(1.25)

where . I is an interval, . f : I × ℜ → ℜ is a function, and .y′ indicates the derivative

of. y with respect to. t . Lastly,. t0 is a value in. I and.y0 is an assigned value called initial

value. The problem of Cauchy (1.25) is termed linear if the function . f (t, y) is linear

with respect to the variable. y. Only a limited number of ordinary differential equations

admit explicit solutions. Therefore, numerical methods are sought to approximate

the solution for every class of ordinary differential equations that admit a solution.

The general strategy of such methods involves dividing the integration interval . I =
[t0, T], with.T < +∞, into.Nh sub-intervals of width.h = (T − t0)/Nh ;. h is referred

to as the discretisation step. For each node .tn = t0 + nh (for .n = 1, . . . , Nh), the

unknown value .un approximating .yn = y(tn) is sought. The set of values . {u0 =
y0, u1, . . . , uNh

} forms the numerical solution.

A classic method is the forward Euler method, which generates the following

sequence:

. un+1 = un + h f (tn, un), n = 0, . . . , Nh − 1.

This method is derived from the differential equation in the Cauchy problem (1.25),

considered at each node . tn with .n = 1, . . . , Nh , where the exact derivative .y
′(tn) is

42 1 Preliminary Concepts

approximated by the difference quotient (1.23). Similarly, by using the difference

quotient (1.24) to approximate .y(tn+1), we obtain the backward Euler method:

. un+1 = un + h f (tn+1, un+1), n = 0, . . . , Nh − 1.

Summing up each step of the forward Euler and backward Euler methods yields

another implicit one-step method termed the Crank-Nicolson method:

. un+1 = un +
h

2

[

f (tn, un) + f (tn+1, un+1)
]

, n = 0, . . . , Nh − 1.

They are three examples of one-step methods, so called because to compute the

numerical solution at the node.tn+1, only the information related to the previous node

.tn is necessary. More precisely, while in the Forward Euler method, the numerical

solution .un+1 depends solely on the previously computed value . un , in the Backward

Euler and Crank-Nicolson methods it also depends, through . f (tn+1, un+1), on itself.

For this reason, the former method is called explicit, while the latter two are called

implicit (the Forward Euler and Backward Euler methods are also known respectively

as explicit Euler and implicit Euler).

Implicit methods are computationally more expensive than explicit ones because

if the function. f in the Cauchy problem (1.25) is non-linear in. y, they require solving

a non-linear problem at each time level .tn+1 to compute .un+1. On the other hand,

implicit methods manifest better stability properties than explicit schemes.

As an illustrative example, consider the ordinary differential equation

.

dy

dt
= −y2, t ∈ [0, a]

with the initial condition .y(0) = 1. Considering the discretisation .tk = a k
n
with . 0 �

k � Nh , i.e. .h = a/n, being .yk the value .y(tk). Using the Euler method, one gets

.

(

dy

dt

)

k

≈
yk+1 − yk

h
= −y2k

from which one can derive the explicit formula

. yk+1 = yk − hy2k

valid for .k = 0, . . . , Nh − 1. Using the backward Euler method, it is

.

yk+1 − yk

h
= −y2k+1

1.5 Numerical Calculus 43

from which one can derive the implicit formula for . yk+1

. yk+1 + hy2k+1 = yk .

Using the Crank-Nicolson method, it is

.

yk+1 − yk

h
= −

1

2
y2k+1 −

1

2
y2k

from which one can derive the implicit formula for . yk+1

. yk+1 +
1

2
hy2k+1 = yk −

1

2
hy2k .

Both implicit formulas can be numerically solved to compute the value of.yk+1 using,

for example, the Newton’s algorithm.

1.5.5 Fixed Point Iteration

With a calculator, it’s easy to verify that repeatedly applying the cosine function

starting from the number 1 generates the following sequence of real numbers.

. x (1) = cos(1) = 0.54030230586814,

x (2) = cos(x (1)) = 0.85755321584639,

...

x (10) = cos(x (9)) = 0.74423735490056,

...

x (20) = cos(x (19)) = 0.73918439977149,

which tends to .α = 0.73908513 . . . Since by construction, .x (k+1) = cos(x (k)) for

.k = 0, 1, . . . (with .x(0) = 1), . α is such that .cos(α) = α: for this reason it is called

fixed point of the cosine function. The interest in a method that exploits iterations

of this type is evident: if . α is a fixed point for the cosine function, then it is a zero

of the function . f (x) = x − cos(x) and the method just proposed could be used to

compute the zeros of . f (only one in this case).

44 1 Preliminary Concepts

To better specify this intuitive idea, consider the following problem: given a func-

tion .φ : [a, b] → R, find .α ∈ [a, b] such that .α = φ(α). If such an . α exists, it is

called a fixed point of . φ and it can be determined as the limit of the following

sequence:

. x (k+1) = φ(x (k)), k � 0

where .x(0) is the initial value. This algorithm is called the fixed-point iteration

method, and . φ is called its iteration function. The introductory example is thus a

fixed-point iteration algorithm for the function .φ(x) = cos(x).

Chapter 2

Governing Equations of Fluid Dynamics

The governing equations of fluid dynamics represent the mathematical formulation

of three fundamental principles of physics:

1. conservation of mass;

2. Newton’s second law of motion;

3. conservation of energy.

2.1 Control Volume

In applying these fundamental principles of physics to a moving fluid, it is useful to

resort to one of the two models described below. Figure 2.1 shows a finite-sized region

within a generic flow. This region is called the control volume, denoted as . V , and

it is bounded by the control surface, denoted as . S. The control volume can be fixed

in space, with the fluid passing through it, as shown in the left-hand side of Fig. 2.1,

or it can be moving with the fluid so as to always contain the same mass of fluid,

as shown in the right-hand side of Fig. 2.1. The equations obtained by applying the

three fundamental principles of physics to the finite control volume—whether fixed or

moving—are said to be in integral form. With appropriate mathematical procedures,

the corresponding differential equations can be derived. In the case of a control

volume fixed in space, we refer to the governing equations in conservative form,

whether they are in integral or differential form. In the case where the conservation

principles are applied to the control volume moving with the fluid, this is known

as governing equations in non-conservative form, whether they are in integral or

differential form.

The control volume may also have infinitesimal dimensions, denoted as.dV , while

still containing a sufficient number of molecules to allow the fluid to be treated as a

continuous medium. As with the finite control volume, the infinitesimal control vol-

ume may be either fixed or in motion. The equations obtained by applying the three

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_2

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2
https://doi.org/10.1007/978-3-031-88957-8_2

46 2 Governing Equations of Fluid Dynamics

Fig. 2.1 On the left, a finite control volume fixed in space. On the right, a finite control volume

moving with the fluid

fundamental principles of physics to the infinitesimal control volume, whether sta-

tionary or in motion, are said to be in differential form. These differential equations

are in conservative form if derived by applying the three principles to a station-

ary infinitesimal control volume. They are in non-conservative form if derived by

considering the infinitesimal control volume moving with the fluid.

2.2 Substantial Derivative

Here we aim to emphasise the physical interpretation of the concept of the substantial

derivative. To this end, we consider the motion of an infinitesimal control volume in

Cartesian space.

Indicating with . i, . j and . k the unit vectors of the three coordinate axes . x , . y and

. z, it is possible to express the velocity vector as .V = ui + vj + wk. In the case of

non-stationary motion, the three components of the velocity vector are functions of

both space and time.

. u = u(x, y, z, t),

. v = v(x, y, z, t),

. w = w(x, y, z, t).

In addition to this, the motion is characterised by a scalar field of density also depen-

dent on both space and time

. ρ = ρ(x, y, z, t).

As shown in Fig. 2.2, the infinitesimal control volume at time . t1 is located at point 1

where the density has the value .ρ1 = ρ(x1, y1, z1, t1).

2.2 Substantial Derivative 47

Fig. 2.2 Infinitesimal

control volume at two

successive moments in time

At a later time . t2, the same infinitesimal control volume is located at point 2

where the density has the value .ρ2 = ρ(x2, y2, z2, t2). Since the density . ρ is a scalar

function, its Taylor series expansion can be written as

. ρ2 = ρ1 +

(
∂ρ

∂x

)

1

(x2 − x1) +

(
∂ρ

∂y

)

1

(y2 − y1) +

(
∂ρ

∂z

)

1

(z2 − z1)

+

(
∂ρ

∂t

)

1

(t2 − t1) + H OT .

By dividing it by .(t2 − t1) and neglecting the terms of higher order, we obtain

.

ρ2 − ρ1

t2 − t1
=

(
∂ρ

∂x

)

1

(
x2 − x1

t2 − t1

)

+

(
∂ρ

∂y

)

1

(
y2 − y1

t2 − t1

)

+

(
∂ρ

∂z

)

1

(
z2 − z1

t2 − t1

)

+

(
∂ρ

∂t

)

1

(2.1)

which, looking at the left-hand side, represents the average variation of density over

time that the infinitesimal control volume undergoes moving from point 1 to point

2. The limit of the quotient on the left-hand side of Eq. 2.1 as .t2 approaches .t1 is

indicated by the symbol .Dρ/Dt :

. lim
t2→t1

(
ρ2 − ρ1

t2 − t1

)

≡
Dρ

Dt

and represents the instantaneous variation of density that the infinitesimal control

volume undergoes moving from point 1 to point 2. The symbol .D/Dt is called the

substantial derivative. The substantial derivative is completely different from the

partial derivative of the density with respect to time at point 1 .(∂ρ/∂t)1 because the

latter represents the instantaneous variation of the density at the fixed point 1: in

other words, the partial derivative measures the variations at a point fixed in both

space and time due to the sole dependence on the time variable . t . The substantial

48 2 Governing Equations of Fluid Dynamics

derivative measures the instantaneous variations of density when the infinitesimal

volume moves in space from one position to another.

Returning to Eq. 2.1, we note that by taking the limit as .t2 → t1, we obtain

.

Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+

∂ρ

∂t
,

noting that

. lim
t2→t1

(
x2 − x1

t2 − t1

)

≡ u,

. lim
t2→t1

(
y2 − y1

t2 − t1

)

≡ v,

. lim
t2→t1

(
z2 − z1

t2 − t1

)

≡ w.

Therefore, the substantial derivative in Cartesian coordinates can be written as

.

D

Dt
≡ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
+

∂

∂t
.

In Cartesian coordinates, the operator .∇ can be written as

. ∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

from which

.

D

Dt
≡

∂

∂t
+ (V · ∇) (2.2)

which is the vector form of the substantial derivative and it is therefore valid in any

reference system. To better clarify the concepts expressed by Definition 2.2, consider

a domain of interest characterised by a specific velocity field that at each point takes

the value of the vector . V. In the same domain of interest, there is a generic property

(for example, temperature) that varies both with respect to space and time. The

instantaneous variation of the generic property associated with the mass contained

in an infinitesimal moving volume—the substantial derivative—is equal to the sum

of two contributions:

1. the local derivative .∂/∂t , i.e., the instantaneous variation at the considered point

due to the time dependence of the property;

2. the convective derivative .V · ∇, i.e., the variation due to the displacement of the

infinitesimal element which, as time passes, moves, due to the aforementioned

velocity field, to a point where the property has a different value.

2.3 The Physical Meaning of the Velocity Divergence 49

In other words, the generic property associated with the mass contained in an infinites-

imal element has changed over time both because the property itself varies over time

and because, due to the velocity field . V, the infinitesimal element has moved to a

point in the domain where the value of the property is different. As mentioned, the

substantial derivative can be applied to any property of the fluid such as temperature,

pressure, etc. Considering the temperature, it can be written

.

DT

Dt
≡

∂T

∂t
+ (V · ∇) T = u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
+

∂T

∂t

in which the temperature variation of an infinitesimal fluid element, when it moves

from one point to another, is due to the temperature variation with time (term.∂T/∂t)

and to the infinitesimal fluid element movement to points characterised by different

temperature values.

2.3 The Physical Meaning of the Velocity Divergence

As in the previous section, a control volume moving with the fluid is considered.

Although such a control volume always contains the same mass, its dimension . V

and its bounding surface. S vary as the position changes since the density. ρ of the fluid

varies from point to point. In Fig. 2.3 such a control volume is shown at a generic

instant of time. Also in the same figure, an infinitesimal element .d S of the control

surface . S is shown. The infinitesimal element .d S will cover a space .V �t in a time

.�t due to the velocity .V with which the fluid moves. Therefore, considering the

volume increase .�V due to the motion of the only element .d S, this will be equal

to the volume of the cylinder having as base the element .d S and as height the value

.(V�t) · n being . n the unit vector normal to the infinitesimal element .d S. In formulas

. �V = [(V�t) · n] d S = (V�t) · dS

having indicated with .dS the product .n d S. To obtain the total volume variation,

it will be necessary to sum the contributions due to all the infinitesimal surface

elements, that is, it will be necessary to calculate the following surface integral:

Fig. 2.3 Control volume

moving with the fluid

50 2 Governing Equations of Fluid Dynamics

.

∮

S

(V�t) · dS.

Dividing this integral by the time interval .�t , we obtain the instantaneous variation

of the volume considered due to the displacement. This is precisely the definition of

substantial derivative applied to the volume . V . In formulas

.

DV

Dt
=

1

�t

∮

S

(V�t) · dS =

∮

S

V · dS.

Applying the divergence theorem, we get

.

DV

Dt
=

∮

S

V · dS =

∫

V

(∇ · V) dV .

If instead of the volume . V , we were to consider an infinitesimal volume .δV and if

this were so small as to be able to consider the value of .∇ · V constant within it, then

we could write

.

D (δV)

Dt
=

∫

δV

(∇ · V) dV = (∇ · V) δV

that is

.∇ · V =
1

δV

D (δV)

Dt
(2.3)

which says that the divergence of the velocity is equal to the substantial derivative

applied to the infinitesimal volume .δV divided by the measure of the infinitesimal

volume itself. In other words, the divergence of the velocity is equal to the time vari-

ation, per unit of volume, of the measure of the volume occupied by an infinitesimal

mass of fluid due to the movement of the fluid itself (see also Sect. 1.1.2).

2.4 The Continuity Equation

If we denote by infinitesimal fluid element the infinitesimal control volume moving

with the fluid, then the mass contained in it will be constant and equal to .δm and

its volume can be indicated by the symbol .δV as in the previous section. Indicating

with the symbol . ρ the density, we can write

. δm = ρδV .

Since the amount of mass contained in the fluid element is always the same, its vari-

ation due to the movement of the fluid will be null. As a consequence, its substantial

derivative will also be null:

2.4 The Continuity Equation 51

Fig. 2.4 Finite control

volume and infinitesimal

control volume fixed in space

.

D (δm)

Dt
=

D (ρδV)

Dt
= δV

Dρ

Dt
+ ρ

D (δV)

Dt
= 0,

that is

.

Dρ

Dt
+ ρ

[
1

δV

D (δV)

Dt

]

= 0

which, recalling Eq. 2.3, becomes

.

Dρ

Dt
+ ρ∇ · V = 0

which is the continuity equation in non-conservative differential form. In order to

write the continuity equation in integral conservative form, we now consider a finite

control volume.V fixed and stationary in space as shown in Fig. 2.4. It will be bounded

by the control surface. S on which it will be possible to define an infinitesimal element

identified by the vector .dS and characterised by the velocity .V as in the previous

section. Within the control volume, it will be possible to define an infinitesimal

volume element .dV .

The principle of mass conservation applied to this control volume implies the

balance between the net mass flow rate exiting through the surface. S and the decrease

in mass contained in the control volume itself.

In general, the mass flow rate through a surface is equal to the product of density,

surface area, and the component of the velocity normal to the surface. In the case of

the infinitesimal element .d S, it will be:

. ρVnd S = ρV · dS.

Considering that the vector .dS points out of the control volume, the product . ρV · dS

will be positive when the mass is leaving the control volume and negative otherwise.

The net flux that crosses the entire surface . S will be the sum of the contributions of

all the infinitesimal elements that make it up, namely

.

∮

S

ρV · dS.

52 2 Governing Equations of Fluid Dynamics

To quantify the variation of the mass contained in the control volume, one can note

that the mass contained in an infinitesimal volume element .dV is equal to .ρdV , and

therefore, the total mass contained in the control volume is

.

∫

V

ρdV .

Considering the decrease in mass contained in the control volume equal to

. −
∂

∂t

∫

V

ρdV ,

the principle of mass conservation applied to this control volume.V can be expressed

as

.

∮

S

ρV · dS = −
∂

∂t

∫

V

ρdV

or

.

∮

S

ρV · dS +
∂

∂t

∫

V

ρdV = 0 (2.4)

which is the continuity equation in integral conservative form. This form is called

conservative because, as will be seen more clearly later, it only contains conserved

variables (in this case . ρ and .ρV). Given that the control volume is fixed in space—

both in terms of position and in terms of shape and size—in Eq. 2.4, it is possible

to bring the partial derivative inside the integral sign. Applying also the divergence

theorem to the first term on the left-hand side of Eq. 2.4 one gets

.

∮

S

ρV · dS =

∫

V

∇ · (ρV) dV .

At this point, Eq. 2.4 can be rewritten as

.

∫

V

∂ρ

∂t
dV +

∫

V

∇ · (ρV) dV = 0

that is

.

∫

V

∂ρ

∂t
+ ∇ · (ρV) dV = 0.

Given the arbitrariness of the choice of the control volume, the cancellation of this

integral is equivalent to the cancellation of the integrand, namely:

.

∂ρ

∂t
+ ∇ · (ρV) = 0 (2.5)

which is the continuity equation in differential conservative form.

2.5 Conservation of Momentum 53

2.5 Conservation of Momentum

To determine this equation, Newton’s second law will be applied to an infinitesimal

fluid element in motion, as shown in Fig. 2.5. When applied to a moving fluid element,

Newton’s second law states that the resultant of the forces . F applied on the element

is equivalent to its total mass .m multiplied by its acceleration . a. Newton’s second

law is a vector relation, of which, for now, only the component in the direction of

the x-axis is considered:

.Fx = max (2.6)

so, the component along the x-axis of all the forces .Fx acting on the element is equal

to its mass .m multiplied by its acceleration .ax along the x-axis. The forces acting on

the element can be of two types:

1. Mass forces, such as gravitational, electrical, or magnetic forces.

2. Surface forces, which are those forces that act on the surface that delimits the

considered element and that can be further divided into two classes: pressure

forces and friction forces.

Indicating with the symbol . f the resultant of the mass forces per unit of mass acting

on the element, . fx will be the component along the x-axis. If we denote with . ρ the

density and considering the volume of the infinitesimal element equal to the product

.dxdydz, it will be

.component along x of the resultant mass f orces = ρ fx dx dy dz. (2.7)

Figures 2.6 and 2.7 show the two friction-related stresses for the .xy plane only.

It is useful to recall that stress is defined as a force per unit area. The shear stress,

denoted by the symbol .τyx , determines the deformation of the fluid element over

time; the normal stress, denoted by the symbol .τxx , determines the change in volume

that the fluid element undergoes over time. Both the shear stress and the normal

stress are due to the velocity gradients present in the fluid, although the normal stress

is generally negligible compared to the shear stress. They are an exception in cases

Fig. 2.5 Infinitesimal fluid

element in motion

54 2 Governing Equations of Fluid Dynamics

Fig. 2.6 Stresses due to

friction: normal stress and

corresponding deformation
xx

z

y

x

Fig. 2.7 Stresses due to

friction: shear stress and

corresponding deformation

z

y

x

yx

Fig. 2.8 Shear stress on the

faces normal to the y-axis

where there are strong velocity gradients in the same direction as the main flow (i.e.

shocks).

Referring to Fig. 2.5, with the symbol .τi j , we will denote the stress in direction

. j exerted on the plane having as normal the direction . i . Looking at Figs. 2.5 and

2.8, the only force .τyx dx dz acting on face .abcd is that due to the shear stress .τyx .

Correspondingly, on face .e f gh, distant .dy from .abcd, the only acting force will be

.

[

τyx +
∂τyx

∂y
dy

]

dx dz.

To determine the direction of application of these forces, it is assumed that the

three components of velocity .u, v, w increase in the positive direction of the three

2.5 Conservation of Momentum 55

Fig. 2.9 Normal stress due

to the velocity gradient

Fig. 2.10 Contribution of

pressure

axes (see Fig. 2.5). Considering the component . u, it will increase in the positive

direction of the x-axis, and in the .xy plane it will increase in the positive direction of

the y-axis, and in the .xz plane it will increase in the positive direction of the z-axis.

Therefore, considering the face .e f gh, the . u component immediately above it will

be greater than that on the face itself, causing it to feel a dragging effect that tends

to increase velocity: the direction of the shear stress on this face will be that of the

positive x-axis. If, on the other hand, the face .abcd is considered, the component

. u immediately below it will be less than that on the face itself, causing it to feel a

dragging effect that tends to reduce the velocity: the direction of the shear stress on

this face will be in the negative direction of the x-axis.

Looking at Figs. 2.9 and 2.10, the . u component immediately to the right of the

face .bcg f will be greater than that on the face itself, causing it to feel a dragging

56 2 Governing Equations of Fluid Dynamics

Fig. 2.11 Shear stress on the

faces normal to the z-axis

effect that tends to increase the velocity: the direction of the normal stress on this

face will be the positive direction of the x-axis. If we consider the face .adhe, the

component . u immediately to the left of it will be less than that on the face itself,

causing it to feel a dragging effect that tends to reduce the velocity: the direction of

the normal stress on this face will be the negative direction of the x-axis. Following

this logic, it is possible to determine the directions of application of all the forces

due to friction. In particular, referring to Fig. 2.11, on the face .dcgh the direction

of the stress .τzy will be negative while on the face .ab f e the direction of the stress

.

(

τzx +
∂τzx

∂z
dz

)

dx dy will be positive.

As for the pressure forces, we refer to the Figs. 2.5 and 2.10. Since we are con-

sidering only the component along . x of all the forces acting on the element, the

only faces for which the contribution of the pressure is not null are .bcg f and .adhe.

Considering the contribution of the pressure always directed towards the inside of

the element, on the face .adhe the force due to the pressure will be directed in the

positive direction of the x-axis and equal to .p dy dz. On the face .bcg f the force

due to the pressure will be directed in the negative direction of the x-axis and equal

to .
[

p +
∂ p

∂x
dx

]

dy dz. Adding up the contributions described so far, we obtain .Fx ,

which is the component in the direction of the x-axis of the total force acting on the

element:

.Fx =

[

p −

(

p +
∂ p

∂x
dx

)]

dy dz

+

[(

τxx +
∂τxx

∂x
dx

)

− τxx

]

dy dz

2.5 Conservation of Momentum 57

+

[(

τyx +
∂τyx

∂y
dy

)

− τyx

]

dx dz

+

[(

τzx +
∂τzx

∂z
dz

)

− τzx

]

dx dy

+ ρ fx dx dy dz

from which

. Fx =

(

−
∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

dx dy dz + ρ fx dx dy dz

represents the element on the left-hand side of Eq. 2.6. As for the remaining part of

Eq. 2.6, the mass .m of the element will be

. m = ρ dx dy dz

while its acceleration .ax is the variation over time of the velocity . u of a moving fluid

element.

By definition, .ax will therefore be equal to the substantial derivative applied to . u:

. ax =
Du

Dt
.

It is now possible to write Eq. 2.6 as

.ρ
Du

Dt
= −

∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρ fx (2.8)

and, considering the remaining two coordinate directions

.ρ
Dv

Dt
= −

∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρ fy, (2.9)

.ρ
Dw

Dt
= −

∂ p

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρ fz . (2.10)

The Eqs. 2.8, 2.9 and 2.10 are scalar equations named Navier–Stokes equations. They

are in non-conservative form because they are obtained from the direct application

of Newton’s second law to an infinitesimal fluid element in motion. To obtain the

corresponding conservative form, it can be noted that by definition of substantial

derivative, it is

.ρ
Du

Dt
= ρ

∂u

∂t
+ ρV · ∇u. (2.11)

Moreover, considering the variation over time of the only component in x of the

momentum, it will be

58 2 Governing Equations of Fluid Dynamics

.

∂(ρu)

∂t
= ρ

∂u

∂t
+ u

∂ρ

∂t
,

that is

. ρ
∂u

∂t
=

∂(ρu)

∂t
− u

∂ρ

∂t

corresponding to the first term on the right-hand side in Eq. 2.11. Again, remembering

the rule for calculating the divergence of the product of a scalar times a vector,

. ∇ · (ρuV) = u∇ · (ρV) + (ρV) · ∇u,

from which

. ρV · ∇u = ∇ · (ρuV) − u∇ · (ρV)

corresponding to the second term on the right-hand side in Eq. 2.11 which can now

be written as

. ρ
Du

Dt
=

∂(ρu)

∂t
− u

∂ρ

∂t
+ ∇ · (ρuV) − u∇ · (ρV).

which, when rearranged, becomes

. ρ
Du

Dt
=

∂(ρu)

∂t
− u

[
∂ρ

∂t
+ ∇ · (ρV)

]

+ ∇ · (ρuV).

The terms within the square brackets are nothing more than the left-hand side of the

continuity equation in conservative differential form Eq. 2.5 so they can be eliminated

leading to write

. ρ
Du

Dt
=

∂(ρu)

∂t
+ ∇ · (ρuV).

Substituting this into the first of the three Navier-Stokes equations, we get

.

∂(ρu)

∂t
+ ∇ · (ρuV) = −

∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρ fx . (2.12)

Recalling Eq. 1.1, it can be written

. div V = ∇ · V =

3
∑

i=1

∂

∂xi

Vi =
∂V1

∂x1
+

∂V2

∂x2
+

∂V3

∂x3
=

∂u

∂x
+

∂v

∂y
+

∂w

∂z

and, consequently

.div (ρuV) = ∇ · (ρuV) =
∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw).

2.5 Conservation of Momentum 59

At this stage, Eq. 2.12 may be expressed in its extended form as

.
∂(ρu)

∂t
+

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = −

∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρ fx .

(2.13)

In a similar manner, taking into account the remaining two Navier–Stokes equations,

we have

.

∂(ρv)

∂t
+ ∇ · (ρvV) = −

∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρ fy, (2.14)

.

∂(ρw)

∂t
+ ∇ · (ρwV) = −

∂ p

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρ fz (2.15)

and, in extended form

.
∂(ρv)

∂t
+

∂

∂x
(ρvu) +

∂

∂y
(ρvv) +

∂

∂z
(ρvw) = −

∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρ fy, (2.16)

.
∂(ρw)

∂t
+

∂

∂x
(ρwu) +

∂

∂y
(ρwv) +

∂

∂z
(ρww) = −

∂ p

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρ fz . (2.17)

Equations 2.12, 2.14 and 2.15 or, equivalently, Eqs. 2.13, 2.16 and 2.17, together

constitute the Navier–Stokes equations in conservative differential form. Using vector

notation, it is possible to express these same equations in a more compact form as

.

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + ∇ · τ + fb

where the symbol . τ represents the viscous stress tensor as defined:

. τ =

⎡

⎣

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎤

⎦ .

2.5.1 Newtonian Fluids

To summarise what was initially presented in Sects. 1.2.3 and 1.2.4, Newtonian are

those fluids for which

• the shear stress is zero when the fluid is still or with a null velocity gradient;

• it is possible to define a proportionality constant—called dynamic viscosity and

indicated by the symbol . µ—between shear stress and velocity gradient. In other

words, it is possible to define a linear relationship between stresses and strain rates

(see Sect. 1.2.1);

60 2 Governing Equations of Fluid Dynamics

• the value of dynamic viscosity does not depend on the direction considered for the

gradient calculation (i.e., the fluid is isotropic).

For such fluids (see also Sect. 1.2.4), it is possible to express the tensor of viscous

stresses as

.τ = µ
[

∇V + (∇V)T
]

+ λ (∇ · V) I (2.18)

where the symbol. I represents the identity matrix. The symbol. λ represents the volume

or dilatational viscosity, which has the dimensions of dynamic viscosity. Volume

viscosity is null for incompressible fluids, and it measures the viscous resistance

of a (compressible) fluid to volume variation. Volume viscosity is important only

when the fluid is rapidly compressed or expanded, as in the case of sound or shock

waves (see also Sect. 1.4.2). Volume viscosity explains the energy loss of these

types of waves, as described by Stokes’ law on sound attenuation. Stokes himself

hypothesised to be

. λ = −
2

3
µ.

In a Cartesian reference frame, Eq. 2.18 can be expressed as

.τ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2µ
∂u

∂x
+ λ∇ · V µ

(
∂v

∂x
+

∂u

∂y

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂v

∂x
+

∂u

∂y

)

2µ
∂v

∂x
+ λ∇ · V µ

(
∂w

∂y
+

∂v

∂z

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂w

∂y
+

∂v

∂z

)

2µ
∂z

∂x
+ λ∇ · V

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.19)

in which the viscous stresses have been expressed as

.τxx = λ∇ · V + 2µ
∂u

∂x
, (2.20)

. τyy = λ∇ · V + 2µ
∂v

∂y
,

. τzz = λ∇ · V + 2µ
∂w

∂z
,

. τxy = τyx = µ

(
∂v

∂x
+

∂u

∂y

)

,

.τxz = τzx = µ

(
∂u

∂z
+

∂w

∂x

)

,

2.5 Conservation of Momentum 61

.τzy = τyz = µ

(
∂w

∂y
+

∂v

∂z

)

. (2.21)

The dynamic viscosity . µ is, in other words, the resistance of a fluid to flow. It is

worth mentioning that the assumption of an isotropic fluid has allowed the setting

of .τxy = τyx , .τxz = τzx , .τzy = τyz , which results in the symmetry of the stress tensor

. τ . In the case of an incompressible flow, the divergence of the velocity will be null,

and Eq. 2.19 can be expressed as

.τ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2µ
∂u

∂x
µ

(
∂v

∂x
+

∂u

∂y

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂v

∂x
+

∂u

∂y

)

2µ
∂v

∂x
µ

(
∂w

∂y
+

∂v

∂z

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂w

∂y
+

∂v

∂z

)

2µ
∂z

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.22)

Using the notation based on indices, it is possible to express the elements of Eq. 2.22

as

.τi j = µsi j = µ

(
∂ui

∂x j

+
∂u j

∂xi

)

. (2.23)

The convention used for this notation assumes that . i or . j = 1 correspond to the first

coordinate direction (. x), . i or . j = 2 correspond to the second coordinate direction

(. y), and . i or . j = 3 correspond to the third coordinate direction (. z). As an example

. τ12 = τxy = µ

(
∂u1

∂x2
+

∂u2

∂x1

)

= µ

(
∂u

∂y
+

∂v

∂x

)

.

In conclusion, for a Newtonian fluid, the equation of momentum conservation can

be expressed as

.

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + ∇ ·

{

µ
[

∇V + (∇V)T
]}

+ ∇ (λ∇ · V) + fb

and, in the case of incompressible flow

.

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + ∇ · µ

[

∇V + (∇V)T
]

+ fb.

Ultimately, in the case where the viscosity is also constant, there is a further simpli-

fication:

.

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + µ∇2V + fb. (2.24)

62 2 Governing Equations of Fluid Dynamics

2.6 Energy Conservation Equation

To determine this equation, the first law of thermodynamics will be applied to the

infinitesimal fluid element in motion shown in Fig. 2.5. Indicating with the symbol A

the variation of energy within the fluid element, with the symbol B the net inflow of

thermal energy into the fluid element, and with C the work done by the mass forces

and the surface forces, the first law of thermodynamics applied to an infinitesimal

fluid element in motion can be expressed as

.A = B + C. (2.25)

Initially, considering the term C, it can be noted that the work done by a force on

a moving body is equal to the product of the force itself and the component of

the body’s velocity in the direction of application of the force. Taking into account

Eq. 2.7, the work done by the mass forces can be expressed as

. ρf · V(dx dy dz).

As for the contribution of surface forces (pressure, shear, and normal stress), initially

only the component of such forces in the .x-direction is considered. Figures 2.12,

2.13, 2.14, 2.15 show the work done by the component in the .x-direction of such

forces to be equal to their product with the . u component in the same direction of

the velocity . V. Assuming the . u component of the velocity is oriented in the positive

direction of the x-axis, the work done by surface forces will be positive if they are

also oriented in the positive direction of the x-axis, and it will be negative if oriented

in the negative direction of the x-axis.

Fig. 2.12 Work done by

pressure forces in the x

direction

2.6 Energy Conservation Equation 63

Fig. 2.13 Work done

considering only the x

direction and only the faces

.adhe and . bcg f

Fig. 2.14 Work done

considering only the x

direction and only the faces

.abcd and . e f gh

In the case of pressure forces, the resultant of the work done by them, considering

only the .x-direction, will be

.

[

up −

(

up +
∂(up)

∂x
dx

)]

dy dz = −
∂(up)

∂x
dx dy dz.

In the case of shear stress, the resultant of the work done, considering only the

.x-direction and only the faces .abcd and .e f gh, will be

.

[

uτyx −

(

uτyx +
∂(uτyx)

∂y
dy

)]

dx dz =
∂(uτyx)

∂y
dx dy dz.

64 2 Governing Equations of Fluid Dynamics

Fig. 2.15 Work done

considering only the x

direction and only the faces

.ab f e and . cdhg

Considering all the surfaces and all the surface forces, we derive:

.

[

−
∂(up)

∂x
+

∂(uτxx)

∂x
+

∂(uτyx)

∂y
+

∂(uτzx)

∂z

]

dx dy dz.

Now, considering the contributions of all the forces in the three coordinate directions,

we derive the expression for term C of Eq. 2.25:

. C =

[

−

(
∂(up)

∂x
+

∂(vp)

∂y
+

∂(wp)

∂z

)

+
∂(uτxx)

∂x
+

∂(uτyx)

∂y
+

∂(uτzx)

∂z

+
∂(vτxy)

∂x
+

∂(vτyy)

∂y
+

∂(vτzy)

∂z

+
∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z

]

dx dy dz + ρf · V(dx dy dz).

We now consider term B of Eq. 2.25. The flux of thermal energy that affects the

fluid element can be of a volumetric type, that is, due to the presence inside it of

sources/sinks of energy (i.e., chemical reactions, nuclear processes, electromagnetic

irradiation), or it can be due to conductive thermal phenomena present on the faces

that delimit it. Let . q̇ as the rate of volumetric heat addition per unit mass. The total

heat generated inside the fluid element is

2.6 Energy Conservation Equation 65

Fig. 2.16 Total thermal flux

that crosses the fluid element

by conduction in the

direction of the x-axis

. ρ q̇ dx dy dz.

Initially, considering only the direction of the x-axis and assuming the thermal flux

due to conduction is always oriented in the positive direction of the same axis, the

heat .q̇x dy dz passes across the face .aedh. Let .q̇x be the heat flux per unit of time

and per unit of surface transmitted by conduction. The total heat flux that crosses the

fluid element by conduction in the direction of the x-axis will be (Fig. 2.16)

.

[

q̇x −

(

q̇x +
∂q̇x

∂x
dx

)]

dy dz = −
∂q̇x

∂x
dx dy dz.

Now, considering the contributions in the three coordinate directions, one derives the

expression for term B of Eq. 2.25:

. B =

[

ρq̇ −

(

q̇x +
∂q̇x

∂x
+

∂q̇y

∂y
+

∂q̇z

∂z

)]

dx dy dz.

If now the terms .q̇x , q̇y, q̇z are considered proportional through the thermal conduc-

tivity coefficient . k to the local gradient of temperature, then we have

. q̇x = −k
∂T

∂x
; q̇y = −k

∂T

∂y
; q̇z = −k

∂T

∂z

and therefore

66 2 Governing Equations of Fluid Dynamics

. B =

[

ρq̇ +
∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)]

dx dy dz.

Finally, term A of Eq. 2.25 is considered. The total energy per unit of mass of the

moving fluid element is equal to the sum of its internal energy per unit of mass,

indicated by the symbol . e, and its kinetic energy per unit of mass, . V
2

2
. Since we are

considering a moving fluid element, the time variation of its total energy is expressed

by a substantial derivative. Therefore, considering the mass of the fluid element to

be equal to .ρ dx dy dz, it will be

. A = ρ
D

Dt

(

e +
V 2

2

)

dx dy dz.

Now, Eq. 2.25 can be expressed as

. ρ
D

Dt

(

e +
V 2

2

)

= ρq̇ +
∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

−
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z

+
∂(uτxx)

∂x
+

∂(uτyx)

∂y
+

∂(uτzx)

∂z

+
∂(vτxy)

∂x
+

∂(vτyy)

∂y
+

∂(vτzy)

∂z

+
∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z
+ ρf · V. (2.26)

Equation 2.26 is the energy conservation equation in non-conservative form in terms

of total energy .e + V 2

2
. To obtain the same equation in terms of the solely internal

energy, one can multiply the Navier–Stokes Eqs. 2.8, 2.9, and 2.10 respectively by

. u, . v, and . w, resulting in

.ρ

D

(
u2

2

)

Dt
= −u

∂ p

∂x
+ u

∂τxx

∂x
+ u

∂τyx

∂y
+ u

∂τzx

∂z
+ uρ fx , (2.27)

.ρ

D

(
v2

2

)

Dt
= −v

∂ p

∂y
+ v

∂τxy

∂x
+ v

∂τyy

∂y
+ v

∂τzy

∂z
+ vρ fy, (2.28)

.ρ

D

(
w2

2

)

Dt
= −w

∂ p

∂z
+ w

∂τxz

∂x
+ w

∂τyz

∂y
+ w

∂τzz

∂z
+ wρ fz . (2.29)

2.6 Energy Conservation Equation 67

Keeping in mind that .V 2 = u2 + v2 + w2, Eqs. 2.27, 2.28, and 2.29, summed

together, result in the expression

. ρ

D

(
V 2

2

)

Dt
= − u

∂ p

∂x
− v

∂ p

∂y
− w

∂ p

∂z

+ u

(
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

+ v

(
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z

)

+ w

(
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z

)

+ ρf · V

Remembering that .ρf · V = ρ
(

u fx + v fy + w fz

)

, substituting in Eq. 2.26 yields

. ρ
De

Dt
= ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ τxx

∂u

∂x
+ τyx

∂u

∂y
+ τzx

∂u

∂z

+ τxy

∂v

∂x
+ τyy

∂v

∂y
+ τzy

∂v

∂z

+ τxz

∂w

∂x
+ τyz

∂w

∂y
+ τzz

∂w

∂z
(2.30)

which is the energy conservation equation in non-conservative form in terms of

internal energy . e. A careful observer will note the absence of the term due to vol-

ume forces from this form of the energy conservation equation. Remembering the

expressions from (2.20) to (2.21), and in particular setting .τxy = τyx , .τxz = τzx , and

.τzy = τyz , we can express

. ρ
De

Dt
= ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ τxx

∂u

∂x
+ τyy

∂v

∂y
+ τzz

∂w

∂z

+ τxy

(
∂u

∂y
+

∂v

∂x

)

+ τzx

(
∂u

∂z
+

∂w

∂x

)

+ τzy

(
∂v

∂z
+

∂w

∂y

)

and again

68 2 Governing Equations of Fluid Dynamics

. ρ
De

Dt
= ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)2

+ µ

[

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
]

(2.31)

which is still the energy conservation equation in non-conservative form in terms of

the internal energy . e only, in which only flow variables appear. In order to obtain

the conservative form of the energy conservation equation in terms of the internal

energy . e, the expression for the substantial derivative is considered:

. ρ
De

Dt
= ρ

∂e

∂t
+ ρV · ∇e.

Recalling that

.

∂(ρe)

∂t
= ρ

∂e

∂t
+ e

∂ρ

∂t
⇒ ρ

∂e

∂t
=

∂(ρe)

∂t
− e

∂ρ

∂t

and that

. ∇ · (ρeV) = e∇ · (ρV) + ρV · ∇e ⇒ ρV · ∇e = ∇ · (ρeV) − e∇ · (ρV) ,

it is

.ρ
De

Dt
=

∂(ρe)

∂t
− e

[
∂ρ

∂t
+ ∇ · (ρV)

]

+ ∇ · (ρeV) . (2.32)

Noticing that the term in square brackets in Eq. 2.32 is null due to the continuity

equation, we can express

.ρ
De

Dt
=

∂(ρe)

∂t
+ ∇ · (ρeV) (2.33)

which, substituted into Eq. 2.31, yields the energy conservation equation in conser-

vative form in terms of the internal energy . e:

2.6 Energy Conservation Equation 69

.

∂(ρe)

∂t
+ ∇ · (ρeV) = ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)2

+ µ

[

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
]

.

(2.34)

The same procedure, applied to the total energy .e + V 2

2
, results in

.ρ

D

(

e +
V 2

2

)

Dt
=

∂

∂t

[

ρ

(

e +
V 2

2

)]

+ ∇ ·

[

ρ

(

e +
V 2

2

)

V

]

(2.35)

which, substituted into Eq. 2.26, yields the energy conservation equation in conser-

vative form in terms of the total internal energy .e + V 2

2
:

.
∂

∂t

[

ρ

(

e +
V 2

2

)]

+ ∇ ·

[

ρ

(

e +
V 2

2

)

V

]

= ρq̇

+
∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

−
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z

+
∂(uτxx)

∂x
+

∂(uτyx)

∂y
+

∂(uτzx)

∂z

+
∂(vτxy)

∂x
+

∂(vτyy)

∂y
+

∂(vτzy)

∂z

+
∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z

+ ρf · V. (2.36)

Those shown here are not the only possible expressions of the equation of energy:

an example is the representation as a function of enthalpy or total enthalpy, which is

not reported here for brevity.

70 2 Governing Equations of Fluid Dynamics

2.7 Considerations on the Governing Equations

The equations considered so far account for dissipative phenomena due to viscosity

and to thermal conductivity. The fluid considered is homogeneous, and there are no

chemical reactions; otherwise, it would be necessary to consider also additional con-

servation equations of mass and momentum related to the various chemical species

present. The energy equation, too, would, in this case, show the presence of addi-

tional terms related to transport and diffusion of various chemical species. When it

is possible to ignore the phenomena related to viscosity, the flow is said to be non-

viscous or inviscid. Table 2.1 summarises the governing equations for compressible,

three-dimensional, non-viscous, and unsteady flows: it is evident that such equations

are derivable from those seen in the previous sections by eliminating the terms due

to viscosity.

Some observations.

• The governing equations analysed so far constitute a system of differential non-

linear equations for which there is no analytical solution.

• In the case of momentum and energy conservation equation the two conservative

and non-conservative forms differ only in the terms on the left hand side.

Table 2.1 Summary table of governing equations for non-viscous flows

Equation Non-conservative form Conservative form

Conservation of mass .
Dρ

Dt
+ ρ∇ · V = 0 .

∂ρ

∂t
+ ∇ · (ρV) = 0

Conservation of momentum

(in x)

.ρ
Du

Dt
= −

∂ p
∂x

+ ρ fx .
∂(ρu)

∂t
+ ∇ · (ρuV) =

−
∂ p
∂x

+ ρ fx

Conservation of momentum

(in y)

.ρ
Dv

Dt
= −

∂ p
∂y

+ ρ fy .
∂(ρv)

∂t
+ ∇ · (ρvV) =

−
∂ p
∂y

+ ρ fy

Conservation of momentum

(in z)

.ρ
Dw

Dt
= −

∂ p
∂z

+ ρ fz .
∂(ρw)

∂t
+ ∇ · (ρwV) =

−
∂ p
∂z

+ ρ fz

Energy conservation .ρ
D

Dt

(

e +
V 2

2

)

= .
∂

∂t

[

ρ

(

e +
V 2

2

)]

+ ∇ ·

[

ρ

(

e +
V 2

2

)

V

]

=

.ρq̇ −
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z
+ ρf · V

.ρq̇ −
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z
+ ρf · V

2.8 Further Insights on the Conservative Form 71

• The conservative form always contains a divergence term among those on the left

hand side—for example .∇ · (ρV) or .∇ · (ρuV). For this reason, the equations in

conservative form are also called equations in divergence form.

• Normal and shear stresses depend on the velocity gradient.

• The system constituted by the governing equations consists of five equations in

six unknowns (.ρ, p, ρu, ρv, ρw, e). The additional equation to consider is the

state equation which, in the case of a perfect gas is

. p = ρRT,

where. R is the constant of the considered gas. This relationship introduces a further

unknown .T which corresponds to a further equation that closes the system and

which is represented by a thermodynamic relationship between the state variables:

. e = cvT

where .cv is the specific heat at constant volume for the considered gas.

• In Sect. 2.5 the momentum conservation equations for non-stationary compress-

ible viscous flows are defined as the Navier–Stokes equations. Although this is

historically correct, in modern literature, when talking about numerical solution

of Navier–Stokes equations, it means the solution of the system formed by all the

governing equations including the continuity equation and conservation of energy

for an unsteady compressible viscous flow.

2.8 Further Insights on the Conservative Form

It is worth recalling that, by definition, the flux of a certain quantity is the measure

of that quantity that crosses a unit of surface area in the unit of time. For example,

the mass flux will be dimensionally equivalent to a mass per unit of time and surface

area:

. [mass f lux] =
kg

m2s
.

It is immediately clear that the mass flux does not coincide with the mass flow rate.

Multiplying the mass flux by a surface area gives the mass flow rate, which can

therefore be interpreted as the flux through a non-unitary surface. Proceeding with

the dimensional analysis of the term .ρu, we obtain

.ρu =
kg

m3

m

s
=

kg

m2s
= [mass f lux]

72 2 Governing Equations of Fluid Dynamics

that is, the momentum per unit volume can be interpreted as a mass flux. The dimen-

sional analysis of the term .ρu2 leads to

. ρu2 = ρuu =
kg

m3

m

s

m

s
=

kg m
s

m2s
= [f lux of momentum] .

As for the dimensional analysis of the pressure term . p, we obtain

. p =
force

surface
=

mass · acceleration

surface

= kg
m

s2

1

m2
=

kg m
s

m2s
=

[

flux of momentum
]

.

This is an opportunity to highlight how a force can be interpreted as a flow rate of

momentum:

.

[

force
]

=
[

pressure
]

·
[

surface
]

=
[

flux of momentum
]

·
[

surface
]

.

With these premises, it is observed once again that, in the conservative form of the

governing equations, the divergence of the flux of a certain quantity always appears:

• the mass conservation equation contains the divergence of the mass flux .ρV;

• the momentum conservation equation along x contains the divergence of the flux

.ρuV of the component along x of the momentum;

• the conservation equation of momentum along y contains the divergence of the

flux .ρvV of the component along x of the momentum;

• the conservation equation of momentum along z contains the divergence of the

flux .ρwV of the component along x of the momentum;

• the energy conservation equation such flux contains the divergence of the flux

.ρ
(

e + V 2

2

)

V of the energy.

It is recalled here that only by considering a fixed control volume in space the

conservative form of the governing equations can be obtained from the application of

the concepts of conservation of mass, momentum (Newton’s second law), and energy

(first law of thermodynamics). Therefore, in the case where a fixed control volume

in space is considered, the governing equations will have as dependent variables

the fluxes rather than the primitive variables such as pressure, density, velocity,

etc. Based on this last consideration, the governing equations can be more clearly

understood if written in conservative form (so-called because only the conserved

variables appear, i.e., the fluxes rather than the primitive variables). The governing

equations are typically written as

.

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= J. (2.37)

2.8 Further Insights on the Conservative Form 73

This equation is able to represent the entire system of Navier-Stokes equations setting

. U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ

ρu

ρv

ρw

ρ

(

e +
V 2

2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu

ρu2 + p − τxx

ρvu − τxy

ρwu − τxz

ρ

(

e +
V 2

2

)

u + pu − k
∂T

∂x
− uτxx − vτxy − wτxz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρv

ρuv − τyx

ρu2 + p

ρuv

ρuw

ρ

(

e +
V 2

2

)

u + pu

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρv

ρuv

ρv2 + p

ρvw

ρ

(

e +
V 2

2

)

v + pv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρw

ρuw

ρvw

ρw2 + p

ρ

(

e +
V 2

2

)

w + pw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

.J =

⎡

⎢
⎢
⎢
⎢
⎣

0

ρ fx

ρ fy

ρ fz

ρ
(

u fx + v fy + w fz

)

+ ρq̇

⎤

⎥
⎥
⎥
⎥
⎦

.

74 2 Governing Equations of Fluid Dynamics

The terms . F, . G, . H in Eq. 2.37 are referred to as flux terms or flux vectors. The term . J

is called source term (which is zero if the volume forces are negligible). The term. U is

referred to as solution vector because its elements are the dependent variables whose

values are the result of numerical iterative solution methods. Once the elements of

. U—also called conserved variables—are known, the value of the primitive variables

can be obtained using the following relationships:

. ρ = ρ; u =
ρu

ρ
; v =

ρv

ρ
; w =

ρw

ρ
; e =

ρ
(

e + V 2/2
)

ρ
−

u2 + v2 + w2

2
.

In the case of inviscid flows, the terms in Eq. 2.37 become

. U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ

ρu

ρv

ρw

ρ

(

e +
V 2

2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu

ρu2 + p

ρvu

ρwu

ρ

(

e +
V 2

2

)

u + pu

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρv

ρuv

ρv2 + p

ρwv

ρ

(

e +
V 2

2

)

v + pv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρw

ρuw

ρvw

ρw2 + p

ρ

(

e +
V 2

2

)

w + pw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; J =

⎡

⎢
⎢
⎢
⎢
⎣

0

ρ fx

ρ fy

ρ fz

ρ
(

u fx + v fy + w fz

)

+ ρq̇

⎤

⎥
⎥
⎥
⎥
⎦

.

The conservative form of the Navier-Stokes equations shown with the Eq. 2.37

is referred to as strong because all the flux variables always appear solely as an

argument of the derivative sign. Conversely, the other conservative forms discussed

are called weak because the flux variables also appear outside the derivative sign.

The representation in strong conservative form is particularly important in the case

of compressible flows which are characterised by the presence of discontinuities in

primitive variables such as shocks. In the case where such discontinuities manifest

in the computational domain without specific detection techniques being incorpo-

rated into the general calculation algorithm, we speak of shock-capturing meth-

ods. An alternative approach involves the explicit introduction in the computational

domain of discontinuities and the use of Rankine-Hugoniot relations to calculate the

value of the primitive quantities upstream and downstream of the shock; the Navier-

2.9 General Transport Equation 75

Fig. 2.17 Computational

domain for the case of

shock-capturing methods

Fig. 2.18 Computational

domain for the case of

shock-fitting methods

Stokes equations are then used to determine the solution of the flow in the remaining

parts of the computational domain. We speak in this case of shock-fitting methods.

Figures 2.17 and 2.18 illustrate the computational domains corresponding to the two

approaches.

The use of the conservative form proves to be of fundamental importance in shock-

capturing methods. Considering a non-viscous flow in which a shock is present and

referring to Fig. 2.19, it can be observed that, across the shock, the primitive variables,

such as density or pressure, exhibit a discontinuity. If one were to consider, using the

non-conservative form, the primitive variables as dependent variables, the presence

of discontinuity would lead to “unstable” calculations (the iterative algorithm would

diverge) as well as to incorrect results. On the contrary, the conserved variables such as

the fluxes.ρu or.(p + ρu2) remain unchanged across the shock: the conservative form

of the Navier-Stokes equations does not recognise discontinuity of the dependent

variables thereby significantly improving the stability of the iterative process and the

accuracy of the results.

2.9 General Transport Equation

Referring to Sect. 2.7, it is noted that, for fluids consisting of a single substance, the

governing equations in conservative form can be written as the following balance

76 2 Governing Equations of Fluid Dynamics

Fig. 2.19 Variation of

properties across a shock

equation known as general transport equation in differential form. Introducing the

symbol . φ to represent the generic quantity being transported, the general transport

equation in differential form is

.

∂ρφ

∂t
︸︷︷︸

Temporal variation

+

Convection
︷ ︸︸ ︷

∇ · (ρuφ) =

Diffusion
︷ ︸︸ ︷

∇ · (ρŴφ∇φ) +

Source
︷ ︸︸ ︷

Sφ(φ) (2.38)

where . ρ is the density, . u is the velocity of the fluid that carries the quantity . φ with its

three components.u, v, w,.Ŵφ is the diffusion coefficient (viscosity. µ or thermal diffu-

sivity . α) of . φ, . Sφ, with its three components .Su, Sv, Sw, is the generation/destruction

of . φ within the fluid element. Equation 2.38 represents the fact that the sum of the

time variation of . φ within the fluid element and the net outgoing/incoming flux due

to conduction from/into the element of fluid, is equal to the variation of . φ within the

fluid element due to the net outgoing/incoming flux due to diffusion from/into the

element of fluid plus the variation, caused by the presence of sources or sinks, of . φ.

By setting .φ = 1, .Ŵφ = 0, .Sφ = 0 it is possible to derive the continuity equation:

2.9 General Transport Equation 77

.

∂ρ

∂t
+ ∇ · (ρu) = 0.

By setting .φ = u, .Ŵφ = µ, .Sφ = Su −
∂ p

∂x
it is possible to derive the first component

of the momentum conservation equation:

.

∂ρu

∂t
+ ∇ · (ρuu) = ∇ · (µ∇u) −

∂ p

∂x
+ Su . (2.39)

By setting .φ = v, .Ŵφ = µ, .Sφ = Sv −
∂ p

∂y
it is possible to derive the second compo-

nent of the momentum conservation equation:

.

∂ρv

∂t
+ ∇ · (ρuv) = ∇ · (µ∇v) −

∂ p

∂y
+ Sv. (2.40)

By setting.φ = w,.Ŵφ = µ,.Sφ = Sw −
∂ p

∂z
it is possible to derive the third component

of the momentum conservation equation:

.

∂ρw

∂t
+ ∇ · (ρuw) = ∇ · (µ∇w) −

∂ p

∂z
+ Sw. (2.41)

In Eqs. 2.39, 2.40, 2.41 the symbol . µ denotes the dynamic viscosity which is related

to the kinematic viscosity . ν by the relation .ν = µ/ρ. The expression of the three

components of momentum conservation equation can be compacted using the vector

notation:

.

∂ρu

∂t
+ ∇ · (ρuu) = ∇ · (µ∇u) − ∇ p + S. (2.42)

In the case where the density can be considered constant and the term . S is absent,

Eq. 2.42 becomes:

.

∂u

∂t
+ ∇ · (uu) = ∇ · (ν∇u) − ∇

(
p

ρ

)

. (2.43)

The term .
p

ρ
is referred to as kinematic pressure. Setting .φ = h, .Ŵφ = k

C p
, .Sφ = Sh it

is possible to derive the energy conservation equation:

.

∂ρh

∂t
+ ∇ · (ρuh) = ∇ ·

(
k

C p

∇T

)

+ Sh,

having indicated with . h the specific enthalpy, with . k the thermal conductivity, with

.C p the specific heat at constant pressure, with . T the absolute temperature. The term

.Sh contains in itself contributions such as viscous dissipation, the time and spatial

variation of pressure, all terms derived from the application of the conservation of

total energy to the control volume considered and not explicitly reported here. To bet-

78 2 Governing Equations of Fluid Dynamics

Fig. 2.20 Effect of

advection

Fig. 2.21 Effect of diffusion

ter understand the phenomena described by the various terms of Eq. 2.38, Figs. 2.20

and 2.21 illustrate the effects of advection (the term .∇ · (ρuφ)) and diffusion (the

term .∇ · (ρŴφ∇φ)) on a quantity . φ whose initial distribution is represented by the

dashed line:

• in the case of advection the profile is not modified in shape but only in position by

a quantity equal to the distance travelled in time . t due to the effect of the velocity

field . u;

• in the case of diffusion the profile does not undergo any displacements but only

deformations related to the decrease in gradients.

See Sect. 1.3.3 for the definitions of advection and convection.

Chapter 3

The Finite Volume Method

Given a computational domain with known initial and boundary conditions, the

objective is to solve the general transport equation for a quantity. φ, which is presented

here for simplicity.

.

∂ρφ

∂t
︸︷︷︸

T emporal variation

+

Convection
︷ ︸︸ ︷

∇ · (ρuφ) =

Di f f usion
︷ ︸︸ ︷

∇ · (ρŴφ∇φ)+

Source
︷ ︸︸ ︷

Sφ(φ) . (3.1)

This is a second-order partial differential equation. To achieve an acceptable degree

of accuracy in its numerical resolution, the employed discretisation scheme must

have a degree of accuracy equal to or higher than that of the equation. To satisfy this

constraint, it is necessary to assume a linear variation of the quantity . φ in space and

time in the vicinity of the generic point. P and time. t under consideration, respectively.

By considering a Taylor series expansion (see Sect. 1.5.1) in the vicinity of point . P ,

accurate to the second order, we obtain

. φ(x) = φP + (x − xP) · (∇φ)P wi th φP = φ(xP)

. φ(t + δt) = φt + δt

(
∂φ

∂t

)t

wi th φt = φ(t).

In the finite volume method, the computational domain is divided (discretised) into

an arbitrary and finite number of control volumes or cells. These control volumes

can have any shape, with the only constraint that the surfaces (faces) delimiting

them must be flat. Information such as the position of the centroid of each control

volume, the position of the centroid of each face of the surface delimiting the control

volume, the volume of each cell, the area of each face, and the cells to which each

face belongs will also be known. Therefore, all the necessary geometric information

will be available. All variables will be calculated and stored at the centroids (centres)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_3

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3

80 3 The Finite Volume Method

of the cells, within which the values of the calculated variables will be considered

constant.

The finite volume method 1 applies the conservation principles discussed in

Sects. 2.4, 2.5, and 2.6 to each of the cells into which the computational domain

has been discretised. Denoting by .VP the volume of the generic cell centred at . P , it

is possible to integrate Eq. 3.1 with respect to .VP to obtain

.

∫

VP

∂ρφ

∂t
dV +

∫

VP

∇ · (ρuφ) dV =

∫

VP

∇ · (ρŴφ∇φ) dV +

∫

VP

Sφ(φ) dV .

Then, using the divergence theorem (see Sect. 1.1.6), it is possible to transform the

volume integrals into surface integrals (see also Sect. 2.8).

.

∂

∂t

∫

VP

(ρφ) dV +

∮

∂VP

dS · (ρuφ) −

∮

∂VP

dS · (ρŴφ∇φ) =

∫

VP

Sφ(φ) dV .

From this, a second-order approximate expression can be derived using the midpoint

integration rule (see Sect. 1.5.2). Regarding the convective term, we have

.

∫

VP

∇ · (ρuφ) dV =

∮

∂VP

dS · (ρuφ)
︸ ︷︷ ︸

convective f lux

=
∑

f

∫

f

dS · (ρuφ) f ≈
∑

f

S f · (ρuφ) f

=
∑

f

S f · (ρuφ) f (3.2)

where .(ρuφ) f represents the value of the quantity .ρuφ at the centre of face . f . For

the diffusive term, on the other hand,

.

∫

VP

∇ · (ρŴφ∇φ) dV =

∮

∂VP

dS · (ρŴφ∇φ)
︸ ︷︷ ︸

di f f usive f lux

=
∑

f

∫

f

dS · (ρŴφ∇φ) f ≈
∑

f

S f · (ρŴφ∇φ) f

=
∑

f

S f · (ρŴφ∇φ) f (3.3)

1 Akshai Runchal, Transfer Processes in Steady Two-Dimensional Separated Flows, Ph.D. thesis,

Faculty of Engineering, University of London, 1969.

3.1 Convective-Diffusive Fluxes 81

where .(ρŴφ∇φ) f represents the value of the quantity .ρŴφ∇φ at the centre of face . f .

For the source term, one can distinguish between the constant contribution .Sc and

the linear contribution .Sp.

.

∫

VP

Sφ(φ) dV = Sφ�V = ScVP + SpVPφP . (3.4)

Observing Eqs. 3.2 and 3.3, it is clear that it is necessary to determine the convective

and diffusive fluxes at the centroids of the cell faces as functions of the values assumed

at the centroids of the cells to which the faces belong. Below, specific interpolation

methods used for this purpose are illustrated.

3.1 Convective-Diffusive Fluxes

The equation describing the transport of a quantity . φ in a steady flow, accounting for

both diffusive and convective phenomena, can be derived from the general transport

Eq. 3.1 by neglecting the time derivative term:

.∇ · (ρuφ) = ∇ · (Ŵφ∇φ) + Sφ (3.5)

which, in the one-dimensional case with flow velocity . u, takes the form

.

d

dx
(ρuφ) =

d

dx

(

Ŵφ

dφ

dx

)

+ Sφu
. (3.6)

The component in the .x-axis direction, .Sφu
, of the source term is a function of

the variable . φ. Specifically, a linear approximation can be considered, as shown in

Eq. 3.4. In the absence of sources, the source term .Sφu
is zero. In addition to the

transport equation, the conservation of mass equation must also be satisfied:

.

d (ρu)

dx
= 0. (3.7)

Referring to Fig. 3.1 and integrating equation 3.6 over the cell centred at. P , we obtain

. (ρuφA)e − (ρuφA)w =

(

Ŵφ

dφ

dx
A

)

e

−

(

Ŵφ

dφ

dx
A

)

w

+ (Su + SPφP) (3.8)

where the subscripts . e and .w indicate the values of the quantity at the right and left

borders, respectively, of the cell centred at . P . Although there are no sources of the

quantity . φ in the analysed problem, the terms related to the linearised source term

82 3 The Finite Volume Method

Fig. 3.1 Cell P centre

.(Su + SPφP) are included in Eq. 3.8 to allow, as shown in the numerical example

below, the correct assignment of boundary conditions. Integrating equation 3.7, we

obtain

. (ρu A)e − (ρu A)w = 0. (3.9)

We can define the flux (flow rate per unit surface area, see Sect. 2.8) of convective

mass as

. F = ρu

and the diffusive mass flux (diffusive conductance) as

. D =
Ŵ

δx

in which the subscript . φ for the quantity . Ŵ has been omitted to simplify the notation.

Therefore, at the left border of the cell centred at . P , it will be

. Fw = (ρu)w Dw =
Ŵw

δxW P

.

whereas at the right border, it will be

. Fe = (ρu)e De =
Ŵe

δxP E

.

Equations 3.8 and 3.9 can be discretised by assuming, for simplicity, that . A = Aw =

Ae and using the centred difference approach to determine the contribution of the

diffusive terms. Note that the elimination of the term related to the area of the faces

from Eq. 3.8 was possible only because there are no source terms, terms derived from

the discretisation of time derivatives, or terms arising from a discretisation that does

not involve the calculation of surface integrals. Therefore, the discretised form of

Eq. 3.8 becomes

.Feφe − Fwφw = De (φE − φP) − Dw (φP − φW) + (Su + SPφP) (3.10)

3.1 Convective-Diffusive Fluxes 83

and the following for Eq. 3.9

.Fe − Fw = 0. (3.11)

The advection velocity values . u at the cell boundaries are generally calculated using

simple linear interpolation between the values at the two adjacent cell centres. It is

now clear that, to solve Eq. 3.10, it is necessary to compute the values of the trans-

ported quantity, .φw and . φe, at the cell boundaries. Various methods for determining

these values will be illustrated below.

3.1.1 Linear Interpolation or Central Differencing

Initially, only the value .φe is considered, which can be calculated by performing a

simple linear interpolation starting from the values at the two cell centres, P and E

(see Fig. 3.2).

In practice, it will be

. φe = fxφP + (1 − fx)φE wi th fx =
eE

P E
=

| xe − xE |

| d |
.

Considering, for simplicity, a grid with uniform spacing, it will be

. φe =
φP + φE

2
, φw =

φW + φP

2
.

Substituting these values into Eq. 3.10 leads to writing

.
Fe

2
(φP + φE) −

Fw

2
(φW + φP) = De (φE − φP) − Dw (φP − φW) + (Su + SPφP)

Fig. 3.2 Linear interpolation

or central difference

84 3 The Finite Volume Method

that is,

.

[(

Dw +
Fw

2

)

+

(

De −
Fe

2

)

+ (Fe − Fw) − SP

]

φP

=

(

Dw +
Fw

2

)

φW +

(

De −
Fe

2

)

φE + Su . (3.12)

Setting

. aP =

[(

Dw +
Fw

2

)

+

(

De −
Fe

2

)

+ (Fe − Fw) − SP

]

,

aW =

(

Dw +
Fw

2

)

,

aE =

(

De −
Fe

2

)

,

it will be possible to express Eq. 3.12 in a more compact form as

.aPφP = aW φW + aEφE + Su . (3.13)

When written for each cell of the considered one-dimensional domain, Eq. 3.13

results in a system of algebraic equations, the solution of which represents the dis-

tribution of the transported quantity . φ in terms of the value at the centre of each

discretisation cell.

3.1.1.1 Numerical Example

Consider the one-dimensional domain shown in Fig. 3.3, within which a scalar quan-

tity . φ is transported with velocity . u in the presence of both convective and diffusive

phenomena.

The governing equation is Eq. 3.6, and the boundary conditions to be set are

.φ0 = 0 for .x = 0 and .φL = 1 for .x = L . The task is to compute the distribution

of . φ as a function of the coordinate . x using the central differencing scheme in the

following cases:

1. discretisation of the computational domain with 5 nodes and .u = 0.1m/s;

2. discretisation of the computational domain with 5 nodes and .u = 2.5m/s;

3. discretisation of the computational domain with 20 nodes and .u = 2.5m/s;

Fig. 3.3 Computational

domain and boundary

conditions

3.1 Convective-Diffusive Fluxes 85

Fig. 3.4 Discretised

computational domain

4. compare the results obtained in each of the previous cases with the analytical

solution given by

.

φ − φ0

φL − φ0

=
exp(ρux/Ŵ) − 1

exp(ρuL/Ŵ) − 1
. (3.14)

Further data necessary for the solution are:.ρ = 1 kg/m3,.L = 1m,.Ŵ = 0.1 kg/(ms).

It should be noted that, although it is constant, the density term is still maintained in

the equations considered below to avoid complicating aspects related to dimensional

analysis. Considering the provided data and observing Fig. 3.4, it can be stated that

all cells will have the same values for the following quantities: .Fe = Fw = F = ρu,

.De = Dw = D = Ŵ/δx .

Figure 3.4 represents the case of a computational domain discretised into five cells.

Equation 3.13 can be applied to the internal cells 2, 3, and 4, while the boundary cells

1 and 5 require a slightly different approach. Considering cell 1, it is noted that the

face . w corresponds to the boundary on which the value of the quantity . φ is specified;

therefore, no calculation is necessary to determine its value. The same applies to the

face . e of cell 5. Therefore, for cell 1, it can be written

.

Fe

2
(φP + φE) − FAφA = De (φE + φP) − DA (φP − φA) (3.15)

and for cell 5

.FBφB −
Fw

2
(φP + φW) = DB (φB + φP) − Dw (φP − φW) . (3.16)

Considering that .DA = DB = 2Ŵ/δx = 2D and that .FA = FB = F Eqs. 3.15 and

3.16 can be written in a compact form as

.aPφP = aW φW + aEφE + Su (3.17)

with

.aP = aW + aE + (FE − FW) − SP . (3.18)

Notice that the expression for .aP differs depending on whether the cell is on the

boundary or not.

Table 3.1 summarises the expression of the coefficients for the cells.

Table 3.2 shows the numerical values of the coefficients for the cells in case 1

(symbol .C1) for which is .u = 0.1m/s, .F = ρu = 0.1, .D = Ŵ/δx = 0.1/0.2 = 0.5.

86 3 The Finite Volume Method

Table 3.1 Expression of the coefficients for the cells

Node .aW .aE .SP . Su

1 0 .D − F/2 .−(2D + F) . (2D + F)φA

2, 3, 4 .D + F/2 .D − F/2 0 0

5 .D + F/2 0 .−(2D − F) . (2D − F)φB

Table 3.2 Value of the coefficients for the cells

Node .aW .aE .Su .SP . ap

.C1 C2 .C1 C2 .C1 C2 .C1 C2 . C1 C2

1 .0 .0.45 . −0.75 .1.1φA . 3.5φA .−1.1 . −3.5 .1.55 . 2.75

2 .1.75 . −0.75 .0.45 . −0.75 .0 .0 . 1

3 .1.75 . −0.75 .0.45 . −0.75 .0 .0 . 1

4 .1.75 . −0.75 .0.45 . −0.75 .0 .0 . 1

5 .1.75 .0 .0 . 0.9φB . −1.5φB .−0.9 . 1.5 .1.45 . 0.25

Therefore, applying Eq. 3.17 to each of the five cells, starting from cell . 1 up to

cell . 5, the following system of algebraic equations can be written:

.

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

1.55φ1 − 0.45φ2 + 0φ3 + 0φ4 + 0φ5 = 1.1

−0.55φ1 + 1φ2 − 0.45φ3 + 0φ4 + 0φ5 = 0

0φ1 − 0.55φ2 + 1φ3 − 0.45φ4 + 0φ5 = 0

0φ1 + 0φ2 − 0.550φ3 + 1φ4 − 0.45φ5 = 0

0φ1 + 0φ2 + 0φ3 − 0.55φ4 + 1.45φ5 = 0

which, in matrix equation form, .Aφ = b becomes

.

⎡

⎢
⎢
⎢
⎢
⎣

1.55 −0.45 0 0 0

−0.55 1 −0.45 0 0

0 −0.55 1 −0.45 0

0 0 −0.55 1 −0.45

0 0 0 −0.55 1.45

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

φ1

φ2

φ3

φ4

φ5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1.1

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎦

whose solution is

.

⎡

⎢
⎢
⎢
⎢
⎣

φ1

φ2

φ3

φ4

φ5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0.9421

0.8006

0.6276

0.4163

0.1579

⎤

⎥
⎥
⎥
⎥
⎦

.

3.1 Convective-Diffusive Fluxes 87

Table 3.3 Comparison between numerical and analytical solution

Node Distance Numerical solution Analytical solution Percentage error

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1 .0.1 .0.9421 .1.0356 .0.9387 .1.0000 .−0.36 . −3.56

2 .0.3 .0.8006 .0.8694 .0.7963 .0.9999 .−0.53 . 13.05

3 .0.5 .0.6276 .1.2573 .0.6224 .0.9999 .−0.83 . −25.74

4 .0.7 .0.4163 .0.3521 .0.4100 .0.9994 .−1.53 . 64.70

5 .0.9 .0.1579 .2.4644 .0.1505 .0.9179 .−4.91 . −168.48

Notice that each row of the coefficient matrix refers to the conservation equation

written for the corresponding cell centre, and that, in correspondence with the ele-

ments of the main diagonal, there are always the values related to the cell centre,

while the off-diagonal elements are the values related to cells adjacent to the one

considered. Given the data of the problem and considering Eq. 3.14, the analytical

solution is given by

. φ(x) =
2.7183 − exp(x)

1.7183
.

Table 3.3 and Fig. 3.5 summarise the comparison between the analytical and

numerical solutions obtained by applying the finite volume method to case 1.

Table 3.2 shows the numerical values of the coefficients for the cells for case 2

(symbol .C2) for which .u = 2.5m/s, .F = ρu = 2.5, .D = Ŵ/δx = 0.1/0.2 = 0.5.

Considering the data of the problem and the Eq. 3.14, the analytical solution is given

by

. φ(x) = 1 +
1 − exp(25x)

7.20 · 1010
.

Table 3.3 and Fig. 3.6 summarise the comparison between the analytical solution and

the numerical solution obtained by applying the finite volume method to case 2. The

Fig. 3.5 Graphical

comparison between

numerical and analytical

solution for case 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Analytical solution

Numerical solution

φ

Distance [m]

88 3 The Finite Volume Method

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1

Analytical solution

Numerical solution

φ

Distance [m]

Fig. 3.6 Graphical comparison between numerical and analytical solution related to case 2

Table 3.4 Value of the coefficients for the cells in case 3

Node .aW .aE .Su .SP . ap

1 .0 .0.75 .6.5φA .−6.5 . 7.25

2–19 .3.25 .0.75 .0 .0 . 4

20 .3.25 .0 .1.5φB .−1.5 . 4.75

discrepancy between the two solutions is clear in this case. The oscillations present

in the numerical solution are known in the literature as “wiggles”.

Referring to case 3, for which it is .u = 2.5m/s, .F = ρu = 2.5, .δx = 0.05, . D =

Ŵ/δx = 0.1/0.05 = 2, Table 3.4 summarises the values of the coefficients for the

cells. It can be seen that, by increasing the number of intervals, the numerical solution

no longer presents significant errors. This is due to the decrease in the value of the

.F/D ratio, which with twenty intervals is .1.25, while with five intervals it is . 5.

3.1.2 Properties of Discretisation Schemes

As previously shown, the onset of oscillatory phenomena in the numerical solution

can be avoided by increasing the number of cells. However, in most common use

cases, the level of refinement required is not acceptable in terms of computational

resources and the time required for calculation. It is therefore necessary to anal-

yse some properties that can provide indications about the behaviour of numerical

schemes when dealing with computational grids that have a reduced number of cells.

Among these properties, the most important are:

• conservativeness;

• boundedness;

• transportiveness.

3.1 Convective-Diffusive Fluxes 89

3.1.2.1 Conservativeness

Considering that each face internal to the computational domain is shared by only two

cells, the corresponding flux can be calculated by considering the face as belonging

alternately to each of the two cells. The numerical scheme is said to have the property

of conservativeness if it provides the same flux value—except for the sign—both

when the face is considered to belong to one cell and when the same face is considered

to belong to the other cell.

To better understand this concept, an example of a scheme that possesses this prop-

erty is now illustrated. Consider the case of a stationary one-dimensional problem

of pure diffusion in the absence of source terms, as illustrated in Fig. 3.7. Consid-

ering cell 2 and applying linear interpolation, the flux crossing the left face will be

.Ŵw2
(φ2 − φ1)/δx , while the flux crossing the right face will be .Ŵe2(φ3 − φ2)/δx .

Considering the remaining cells, it is:

.

[

Ŵe1

(φ2 − φ1)

δx
− qA

]

+

[

Ŵe2

(φ3 − φ2)

δx
− Ŵw2

(φ2 − φ1)

δx

]

+

[

Ŵe3

(φ4 − φ3)

δx
− Ŵw3

(φ3 − φ2)

δx

]

+

[

qB − Ŵw4

(φ4 − φ3)

δx

]

= qB − qA. (3.19)

Given that .Ŵe1 = Ŵw2
, .Ŵe2 = Ŵw3

, and .Ŵe3 = Ŵw4
, the fluxes at the interfaces cancel

out (it is said in this case that they are expressed in a consistent manner), and there-

fore Eq. 3.19 is satisfied. The consistency of the flux expression resulting from the

application of linear interpolation determines the conservation of . φ throughout the

computational domain (i.e., the flux that crosses all the internal faces has, except for

the sign, always the same value regardless of whether one or the other of the two

cells to which the face belongs).

Inconsistent interpolation laws give rise to schemes that do not conserve the

transported quantity . φ. This is the case illustrated in Fig. 3.8, where a quadratic

interpolation curve is used for the calculation of the fluxes at the interface: it can

be noted that the value of . φ on the face that separates cell 2 from cell 3 is different

depending on the values used to determine the quadratic curve. The quadratic curve

using values .φ1,φ2,φ3 differs from that using the values .φ2,φ3,φ4. In other words,

the flux exiting from cell 2 through the face is not equal—it does not conserve—in

modulus to the one entering cell 3 through the same face.

Fig. 3.7 Application of the

central differencing scheme

for the calculation of flows at

the interface

90 3 The Finite Volume Method

Fig. 3.8 Application of the

scheme with quadratic

interpolation curve for the

calculation of the fluxes at

the interface

The term consistency used here expresses a concept different from that of consis-

tency of a numerical method, according to which, as the level of refinement increases,

the truncation error must decrease, i.e., the difference between the solution of the

analytical equation and the solution of the discretised equation decreases.

3.1.2.2 Boundedness

Considering Sect. 4.3, the confinement criterion is recalled here, according to which,

in the absence of sources, the value of the quantity . φ in the generic cell must lie

between those of the two cells adjacent to it. In the case of the numerical exam-

ple illustrated in Sect. 3.1.1, according to this criterion, the temperature within the

computational domain must be between the values set at the ends of the domain

as boundary conditions. If the considered scheme does not satisfy this criterion, it

may cause the iterative solution process to fail to converge or present unrealistic

oscillations—wiggles—as illustrated in Fig. 3.6.

3.1.2.3 Transportiveness

It is necessary here to define the Péclet number as

. Pe =
F

D
=

ρu

Ŵ/δx
.

This dimensionless number expresses a measure of the relative strength of convection

and diffusion.

Figure 3.9 shows the transport of the quantity . φ in the absence of convection: in

this case, the fluid is at rest, .Pe = 0, and the iso-level curves of . φ are concentric

circles with the centre located at the cell centres W and E. The value of . φ at the cell

Fig. 3.9 Purely diffusive

transport

3.1 Convective-Diffusive Fluxes 91

Fig. 3.10 Convective-

diffusive transport

Fig. 3.11 Purely convective

transport

centre P depends both on the contributions from W and E, since the diffusive process

proceeds in all directions indiscriminately.

Figure 3.10 shows the transport of the quantity . φ in the case of the simultaneous

presence of convection and diffusion: in this case, the fluid moves with velocity . u,

.Pe �= 0, and the iso-level curves of . φ are translated ellipses in the direction of the

fluid velocity. The value of . φ at the cell centre P depends to a greater extent on the

contribution from W.

Figure 3.11 shows the transport of the quantity. φ in the absence of diffusion: in this

case the fluid moves with velocity . u, .Pe → ∞ and the iso-level curves of . φ collapse

into a half-line originated in W. The value of . φ in the centre of cell P depends only

on the contribution of W, while the centre of cell E does not influence the value in the

centre of cell P at all. In conclusion, transportiveness describes the mutual influence

of the nodes, depending on the Péclet number and the direction of the advection

velocity.

3.1.3 Assessment of the Central Scheme

for Convection-Diffusion Cases

With reference to the concepts just illustrated, the behaviour of the scheme with

linear interpolation is now analysed.

Conservativeness: Sect. 3.1.2.1 showed that this scheme presents a consistent

expression for the fluxes.

Boundedness: As demonstrated in Sect. 3.1.1, for the cell centre P, Eq. 3.17 applies

with the expression of .aP shown in Eq. 3.18. Considering that a stationary one-

dimensional flow must satisfy the continuity equation, it follows that.Fe − Fw = 0, as

shown in Eq. 3.11. Consequently, we can write that .aP = aW + aE . This expression

implies that the coefficients of the central scheme satisfy the Scarborough criterion

(see Sect. 4.3).

Particular attention should be given to the coefficient .aE = De − Fe

2
, because in

the case of strongly convective flows, the value of .Fe could make the coefficient . aE

negative. The limit condition is therefore expressed as:

.

Fe

De

= Pee < 2. (3.20)

92 3 The Finite Volume Method

Unlike cases 1 and 3, in case 2 of the numerical example seen before, this condition is

violated, resulting in the presence of non-physical oscillations, as shown in Fig. 3.6.

It is interesting to note that the Péclet number is a combination of flow properties

(i.e., the velocity . u), fluid properties (i.e., the density . ρ and the diffusion coefficient

. Ŵ), and properties of the computational grid (i.e., the spacing .δx). Therefore, given

the values of . ρ and . Ŵ for a specific fluid, the condition (3.20) can be satisfied either

for low velocity values (i.e., flows with a low Reynolds number, where diffusion is

dominant) or for small grid spacings (i.e., very fine grids).

Transportiveness: In this scheme, the computation of convective and diffusive fluxes

does not take into account the direction of flow or the relative strength of con-

vection versus diffusion. As a result, the scheme does not possess the property of

transportiveness when applied to flows with a high Péclet number.

3.1.4 Upwind Scheme or Upwind Differencing (UD)

In this approach, the direction of the flow is considered in order to determine the

value of .φ f . Specifically, .φ f is defined as the value of . φ at the cell centre from which

point . f perceives the arriving flow (see Figs. 3.12 and 3.13). Using a nautical term,

this is referred to as the upwind value of . φ. The considered value is upwind relative

to point . f , which represents the intersection of the line connecting the centres of

the two cells to which the face belongs, and the face itself, whose normal vector is

denoted by .n f . In formulas,

.

{

φ f = φP for (u · n) f ≥ 0,

φ f = φN for (u · n) f < 0.

Fig. 3.12 Value of .φ f in the

case .(u · n) f ≥ 0

3.1 Convective-Diffusive Fluxes 93

Fig. 3.13 Value of .φ f in the

case . (u · n) f < 0

This scheme is accurate to the first order. Using the notation in Fig. 3.4, if the

direction of the flow is positive, then .uw > 0, .ue > 0, and consequently .φw = φW ,

.φe = φP . The discretised equation for point .P can then be written as

. FeφP − FwφW = De (φE − φP) − Dw (φP − φW)

This can be rearranged as follows to highlight the coefficients of .φP , .φW , . φE

. [(Dw + Fw) + De + (Fe − Fw)]φP = (Dw + Fw) φW + DeφE . (3.21)

When the flow direction is negative,.uw < 0,.ue < 0 and therefore.φw = φP ,. φe = φE

and the discretised equation for point P is

. [Dw + (De − Fe) + (Fe − Fw)]φP = DwφW + (De − Fe) φE . (3.22)

Equations 3.21 and 3.22 can be rewritten in the form

. aPφP = aW φW + aEφE

with

. aP = aW + aE + (Fe − Fw) , aW = DW + max(Fw, 0), aE = DE + max(0,−Fe).

To better understand the properties of this numerical scheme, it will be applied to

the numerical example presented in Sect. 3.1.1. Once again, all cells will have the

same values for the following quantities: .Fe = Fw = F = ρu, . De = Dw = D =

D = Ŵ/δx .

Applying the upwind scheme to cell 1, it can be written as

.FeφP + FAφA = De (φE − φP) − DA (φP − φA) (3.23)

and for cell 5

.FBφP − FwφW = DB (φB − φP) − Dw (φP − φW) . (3.24)

94 3 The Finite Volume Method

Considering that .DA = DB = 2Ŵ/δx = 2D and that .FA = FB = F , Eqs. 3.23 and

3.24 can be written in compact form as

.aPφP = aW φW + aEφE + Su (3.25)

with

.aP = aW + aE + (FE − FW) − SP (3.26)

This includes the contribution of the boundary conditions as a source term.

Table 3.5 summarises the values of the coefficients for the cells.

Considering the problem data and Eq. 3.14, the analytical solution for case 1 is

given by

. φ(x) =
2.7183 − exp(x)

1.7183
.

Table 3.6 and Fig. 3.14 summarise the comparison between the analytical and

numerical solutions.

Regarding case 2, where .u = 2.5m/s, .F = ρu = 2.5, and . D = Ŵ/δx =

0.1/0.2 = 0.5, the analytical solution is given by

. φ(x) = 1 +
1 − exp(25x)

7.20 · 1010
.

Table 3.7 and Fig. 3.15 summarise the comparison between the analytical solution

and the numerical solution obtained by applying the upwind scheme. It is evident

Table 3.5 Expression of the coefficients for the cells in the case of the upwind scheme

Node .aW .aE .SP . Su

1 0 .D .−(2D + F) . (2D + F)φA

2, 3, 4 .D + F .D 0 0

5 .D + F 0 .−2D . 2DφB

Table 3.6 Comparison between numerical solution and analytical solution for case 1 solved using

the upwind scheme

Node Distance Numerical

solution

Analytical

solution

Percentage error

1 .0.1 .0.9337 .0.9387 . 0.53

2 .0.3 .0.7879 .0.7963 . 1.05

3 .0.5 .0.6130 .0.6224 . 1.51

4 .0.7 .0.4031 .0.4100 . 1.68

5 .0.9 .0.1512 .0.1505 .−0.02

3.1 Convective-Diffusive Fluxes 95

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Analytical solution

Numerical solution

φ

Distance [m]

Fig. 3.14 Comparison between numerical solution and analytical solution for case 1 solved using

the upwind scheme

Table 3.7 Comparison between numerical solution and analytical solution for case 2 solved using

the upwind scheme

Node Distance Numerical

solution

Analytical

solution

Percentage error

1 .0.1 .0.9998 .1 . −3.56

2 .0.3 .0.9987 .0.9999 . 13.05

3 .0.5 .0.9921 .0.9999 . −25.74

4 .0.7 .0.9524 .0.9994 . 64.70

5 .0.9 .0.7143 .0.9179 . −168.48

Fig. 3.15 Comparison

between numerical solution

and analytical solution for

case 2 solved using the

upwind scheme

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

Analytical solution

Numerical solution

φ

Distance [m]

that there is an improvement compared to the centred scheme, although a discrep-

ancy remains between the analytical and numerical solutions at the nodes near the

boundary . B of the computational domain.

In relation to the properties describing the behaviour of a numerical scheme, it can

be stated that the upwind scheme possesses the property of conservativeness because

the expression for the flux at the interface is consistent. The upwind scheme also has

the property of boundedness, as the coefficients of the discretised equation are always

96 3 The Finite Volume Method

Fig. 3.16 Computational

domain, initial and boundary

conditions used to show the

phenomenon of numerical

diffusion

positive and the coefficient matrix is always diagonally dominant. Furthermore, the

upwind scheme exhibits the property of transportiveness because it accounts for the

direction of the flow. One of the most well-known problems associated with this

scheme is false diffusion, also referred to as numerical diffusion. When the flow is

not aligned with the grid, numerical diffusion causes the transported quantity . φ to

be redistributed over more than one cell (smearing), in a manner similar to the effect

of physical diffusivity (see Fig. 2.21). This effect can be illustrated by analysing the

transport of a scalar . φ in a fluid that does not have a diffusion coefficient (.Ŵ = 0) and

in the absence of sources, applying the upwind scheme on a computational domain

whose grid is inclined at a certain angle with respect to the direction of the fluid

motion in which . φ is transported. Figure 3.16 illustrates the computational domain,

boundary conditions, and initial conditions used to demonstrate the phenomenon of

numerical diffusion.

In Fig. 3.16, a dashed segment is shown, over which the values of the transported

quantity are displayed at different levels of grid refinement in Fig. 3.17. The analytical

solution for the case in Fig. 3.16 represents a flow with a direction parallel to the

continuous line diagonal. Moving along the dashed diagonal from left to right, the

value of the transported quantity remains constant (100) until it intersects with the

continuous diagonal, where a step change occurs. After the intersection, the value of

the transported quantity becomes constant and equal to 0 until the boundary of the

domain. Figure 3.17 illustrates the variation in the value of the transported quantity,

corresponding to the analytical solution. In the same figure, it can be observed that

the smearing phenomenon is reduced as the level of grid refinement increases. In

many practical cases, the level of refinement required may be unacceptable due to

the computational load involved. Furthermore, it has been shown that even with high

levels of grid refinement, numerical diffusion can still lead to unacceptable results

for flows with a high Reynolds number.

3.1 Convective-Diffusive Fluxes 97

Fig. 3.17 Variation of the value of the transported quantity along the dashed segment shown in

Fig. 3.16 in the case of the application of the upwind scheme

3.1.5 Linear Upwind Scheme

In central differencing, an interpolation is performed, whereas in the case of the linear

upwind scheme—or linear upwind differencing (LUD)—a linear extrapolation is

performed based on the value of . φ and its gradient at the centre of the upwind cell.

Essentially, this scheme can be thought of as an upwind scheme to which a corrective

extrapolation term is added, derived from the use of the gradient value at the centre

of the upwind cell (in Fig. 3.18, the slope of the segment connecting .φW , .φP , and

. φe), and the distance between the centre of the upwind cell and the centre of the

face (in Fig. 3.18, .δx/2). Figure 3.18 illustrates the calculation of the value of the

transported quantity . φ at the face . e in a one-dimensional case with a uniform grid.

The advection velocity . u is positive at the considered face, and the gradient at the

cell centre is calculated based on the values at the centres of the two upwind cells.

In formulas,

. φe =

{

φP + 1
2
(φP − φW) f or Fe ≥ 0,

φP + 1
2
(φP − φE) f or Fe < 0.

In constructing the matrix equation representing the conservation equations for each

of the cells, the term related to the “upwind part” of this scheme will contribute to the

coefficient matrix and, therefore, will be calculated implicitly through the inversion

of the coefficient matrix itself. The extrapolation correction term will contribute to

98 3 The Finite Volume Method

determining the vector of known terms and, hence, will be calculated explicitly—

using the values of the necessary quantities obtained from the last iteration or from

the initial conditions. For this scheme, errors in the gradient calculation due to skew-

ness (see Sect. 3.4) are typically not taken into account, because the extrapolation

correction term is computed considering the line joining the centre of the upwind

cell and the centre of the face, rather than the line joining the centres of the two cells

to which the face belongs. Although this second-order accurate scheme can produce

acceptable solutions, it does not possess the property of boundedness. Therefore, in

cases of very high gradients, it may cause non-physical oscillations in the value of

the transported quantity. With the aim of eliminating these undesirable behaviours,

Total Variation Diminishing (TVD) schemes have been introduced, as will be shown

later.

3.1.6 QUICK Scheme (Quadratic Upwind Interpolation

for Convective Kinetics)

This is one of the first so-called higher-order schemes, i.e., schemes with an order of

accuracy greater than second order. For the calculation of the flow at the interface,

this scheme uses a quadratic function, whose value at the two centres near the face

under consideration, as well as at the nearest cell centre in the upwind direction, is

equal to the value of the considered quantity at these centres. In the case where, as

shown in Fig. 3.19, .uw > 0 and .ue > 0, a quadratic curve passing through the points

.φP , .φW , and .φW W is used to calculate .φw, while a quadratic curve passing through

the points .φE , .φP , and .φW is used to calculate . φe. Referring to Figs. 3.19 and 3.20,

we aim to find the expression of the quadratic function whose profile is chosen to

approximate the trend of the quantity . φ within the cell centred at . P:

. φ = a0 + a1x + a2x2.

In the case where .uw > 0, the coefficients . a0, . a1, and .a2 of such a function can

be determined by assigning the passage through the points .i − 2, .i − 1, and . i with

Fig. 3.18 Linear upwind

scheme

3.1 Convective-Diffusive Fluxes 99

Fig. 3.19 Profile of

quadratic function used for

the calculation of the flow at

the interface

Fig. 3.20 Discretised

computational domain

coordinates .(−δ,φi−2), .(0,φi−1), and .(δ,φi), respectively. By imposing the passage

through the point .i − 1, we obtain:

.φi−1 = a0. (3.27)

Imposing the passage through the point . i we get

.φi = a0 + a1δ + a2δ
2. (3.28)

Imposing the passage through the point .i − 2 we get

.φi−2 = a0 − a1δ + a2(−δ)2. (3.29)

From Eqs. 3.27, 3.28, 3.29 we get

. a0 = φi−1, a1 =
φi − φi−2

2δ
, a2 =

φi + φi−2 − 2φi − 1

2δ2
.

Knowing the values of the coefficients . a0, . a1, .a2 it is possible to calculate the value

of .φw at .x = δ/2:

. φw = a0 + a1

δ

2
+ a2(

δ

2
)2

from which

.φw =
6

8
φi−1 +

3

8
φi −

1

8
φi−2

100 3 The Finite Volume Method

or, equivalently

. φw =
6

8
φW +

3

8
φP −

1

8
φW W .

Similarly, for .ue > 0 we get

. φe =
6

8
φP +

3

8
φE −

1

8
φW .

For the calculation of diffusive fluxes on uniform grids, the application of the centred

scheme is equivalent to the application of the QUICK scheme. This is because the

slope of the tangent at the midpoint of a parabolic arc is the same as the segment

connecting the two ends of the arc considered. In the case where .Fw > 0 and . Fe >

0, applying the QUICK scheme for convective terms and the centred scheme for

diffusive terms, the one-dimensional convective-diffusive transport equation can be

written as:

.

[

Fe

(
6

8
φP +

3

8
φE −

1

8
φW

)

− Fw

(
6

8
φW +

3

8
φP −

1

8
φW W

)]

=

De (φE − φP) − Dw (φP − φW)

when rearranged to highlight the coefficients of the fluxes at the cell centres, this

becomes:

.

(

Dw −
3

8
Fw + De +

6

8
Fe

)

φP =

(

Dw +
6

8
Fw + De +

1

8
Fe

)

φW +

(

De −
3

8
Fe

)

φE −
1

8
FwφW W .

In general, for the QUICK scheme, it can be written

. aPφP = aW φW + aEφE + aW W φW W + aE EφE E

with

. aP = aW + aE + aW W + aE E + (Fe − Fw)

and

. aW = Dw +
6

8
αw Fw + De +

1

8
αe Fe,

aW W = −
1

8
αw Fw +

3

8
(1 − αw)Fw,

aE = De −
3

8
αe Fe −

6

8
(1 − αe) Fe −

1

8
(1 − αw)Fw

while

3.1 Convective-Diffusive Fluxes 101

. αw = 1 f or Fw > 0 ; αe = 1 f or Fe > 0

αw = 0 f or Fw < 0 ; αe = 0 f or Fe < 0.

The use of two nodes adjacent to the considered one, along with the upwind node,

ensures that the scheme is conservative and endowed with the property of trans-

portiveness. By using a quadratic curve, the QUICK scheme achieves third-order

accuracy in the case of a uniform grid. On the other hand, this scheme exhibits con-

ditionally stable behaviour due to the possibility that the coefficients .aW W and .aE E ,

even for small values of the Péclet number (.Pe > 8/3), can become negative. A mod-

ified form of this scheme that is conservative, bounded, and transportive is known

as Hayase’s QUICK scheme. 2 This scheme uses an appropriate source term that pre-

vents the coefficients from becoming negative, and can be illustrated as follows: the

value of the transported quantity is calculated as:

. φw = φW +
1

8
(3φP − 2φW − φW W) f or Fw > 0,

φe = φP +
1

8
(3φE − 2φP − φW) f or Fe > 0,

φw = φP +
1

8
(3φW − 2φP − φE) f or Fw < 0,

φe = φE +
1

8
(3φP − 2φE − φE E) f or Fe < 0.

The discretisation equation is written in the form

. aPφP = aW φW + aEφE + S

with

. aP = aW + aE + (Fe − Fw),

aW = Dw + αw Fw,

aE = De − (1 − αe) Fe,

S =
1

8
(3φP − 2φW − φW W)αw Fw +

1

8
(φW − 2φP − 3φE)αe Fe

+
1

8
(3φW − 2φP − φE)(1 − αw)Fw +

1

8
(2φE − 2φE E − 3φP)(1 − αe)Fe

and

.αw = 1 f or Fw > 0 ; αe = 1 f or Fe > 0

2 T. Hayase, J. A. C. Humphrey, R. Greif, A consistently formulated QUICK scheme for fast and

stable convergence using finite-volume iterative calculation procedures, “Journal of Computational

Physics”, January 1992, 98(1), pp. 108–118.

102 3 The Finite Volume Method

αw = 0 f or Fw < 0 ; αe = 0 f or Fe < 0.

The computation of the source term in the parts of the discretisation that contain

negative coefficients is referred to as deferred correction, because the value of the

terms necessary for the calculation of. S at the.n-th iteration is taken from the.(n − 1)-

th iteration. In other words, the correction is deferred by one iteration. Although the

QUICK scheme has many positive aspects (such as reduced numerical diffusivity and

a higher degree of accuracy), it, like the centred scheme, can produce non-physical

oscillations. In some cases, this can lead to results that are not acceptable, such as in

turbulence modelling, where negative values of quantities that can only be physically

positive may occur.

3.1.7 Total Variation Diminishing (TVD) Schemes

This technique aims to mitigate the accuracy issues of the upwind scheme, as well as

the stability and boundedness issues of the centred scheme. For simplicity, consider

the calculation of the transported quantity . φ at the face . e in a one-dimensional case

with a uniform grid, where the advection velocity . u is positive at the considered face

(see Fig. 3.18). Initially, considering the LUD scheme, it is:

.φe = φP +
φP − φW

δx

δx

2
= φP +

1

2
(φP − φW) . (3.30)

Therefore, the LUD scheme can be considered an upwind first-order accurate scheme,

which, when modified with additional terms, becomes second-order accurate. The

additional term is always constructed in accordance with the upwind strategy that

takes into account the direction of the flow and is an estimate of the gradient.
(

φP −φW

δx

)

of the transported quantity, multiplied by the distance between the cell centre and the

considered face. In terms of the total flux .Feφe at the interface, the LUD scheme can

be viewed as the convective flux .FeφP calculated using the UD scheme, to which a

corrective term .Fe

(
φP −φW

2

)

is added to increase the order of accuracy. According to

this logic, the QUICK scheme can also be considered an upwind scheme to which a

corrective term is added to further increase the order of accuracy:

. φe = φP +
1

8
[3φE − 2φP − φW] .

The same applies to the centred scheme:

.φe = φP +
1

2
(φE − φP) .

3.1 Convective-Diffusive Fluxes 103

The three aforementioned schemes can, therefore, be summarised in a single formula

that makes use of an appropriate function . ψ.

. φe = φP +
1

2
(φE − φP)ψ

from which, it can once again be observed that the total flux .Feφe at the interface can

be considered as the convective flux .FeφP calculated using the UD scheme, to which

a corrective term.Feψ (φE − φP) /2 is added. Through the function. ψ, this corrective

term is proportional to the corrective term of the centred scheme .Fe (φE − φP) /2,

which represents the variation of . φ as the transition occurs from cell centre . P to cell

centre . E . It is immediately apparent that for .ψ = 0, the upwind scheme is obtained,

and for .ψ = 1, the centred scheme is recovered. Furthermore, to determine the value

of . ψ in the LUD case, it is necessary to rewrite Eq. 3.30 as:

. φe = φP +
1

2

φP − φW

φE − φP

(φE − φP)

From this, it is evident that for the LUD scheme, .ψ = φP −φW

φE −φP
. Following the same

strategy, in the case of the QUICK scheme, it is:

. φe = φP +
1

2

[(

3 +
φP − φW

φE − φP

)
1

4

]

(φE − φP)

with

. ψ =

(

3 +
φP − φW

φE − φP

)
1

4
.

The coefficient . ψ can be thought of as a function of the ratio . r between the variation

(gradient) .φP − φW of the quantity . φ from the upwind side and the variation (gradi-

ent) .φE − φP of the quantity . φ from the downwind side with respect to point . P . In

formulas:

. ψ = ψ(r) with r =
φP − φW

φE − φP

and so

. φe = φP +
1

2
(φE − φP)ψ(r)

With .ψ(r) = 0 for the upwind scheme, .ψ(r) = 1 for the centred scheme, . ψ(r) = r

for the LUD scheme, and .ψ(r) = 3+r
4

for the QUICK scheme. Figure 3.21 shows

the .r − ψ diagram, graphically describing the function .ψ(r). The function .ψ(r),

called the flux limiter, determines the weight of the additional term, compared to that

derived from the simple upwind scheme, in calculating the value of the quantity at

the face. Its aim is to maximise accuracy, stability, and boundedness. The value of

104 3 The Finite Volume Method

Fig. 3.21 .r − ψ diagram; in the shaded area the values of . ψ that make the scheme TVD

.ψ(r) changes depending on the cell considered, even though the expression used to

calculate it remains the same for the entire computational domain.

3.1.7.1 Total Variation

Schemes such as upwind have a low order of accuracy but do not give rise to oscilla-

tions. Conversely, higher-order schemes such as the centred scheme, linear upwind,

and QUICK exhibit oscillations, although they have a higher order of accuracy.

It has been shown that a higher-order scheme that is stable and does not present

oscillations possesses the property of monotonicity-preserving. For a scheme to be

monotonicity-preserving, it must not...

• create local maxima or minima;

• accentuate the value of any maxima or minima present in the solution.

It is now possible to introduce the concept of total variation, which, with reference

to Fig. 3.22, can be defined as...

. T V (φ) = |φ2 − φ1| + |φ3 − φ2| + |φ4 − φ3| + |φ5 − φ4| = |φ3 − φ1| + |φ5 − φ3|

In the literature,3 total variation was initially analysed for the case of non-stationary

Fig. 3.22 Variation of the

quantity .φ

3.1 Convective-Diffusive Fluxes 105

one-dimensional transport equations. For this reason, we refer to TVD (Total Vari-

ation Diminishing) schemes when the total variation of the solution, .T V (φn), at a

certain time step . n is greater than the total variation of the solution, .T V (φn+1), at the

next time step.n + 1, i.e.,.T V (φn+1) < T V (φn). A monotonicity-preserving scheme

is also TVD.

3.1.7.2 TVD Schemes

A necessary and sufficient condition for a scheme to possess the TVD property is

that

• for .0 < r < 1 it must be .ψ(r) ≤ 2r ;

• for .r ≥ 1 it must be .ψ(r) ≤ 2.

Referring to Fig. 3.21, this condition is equivalent to having values of . ψ contained

within the shaded area of the .r − ψ diagram. From the same figure, it can be noted

that:

• the upwind scheme is TVD;

• the LUD scheme is not TVD for .r ≥ 2;

• the centred scheme is not TVD for .r < 0.5;

• the QUICK scheme is not TVD for .r < 3/7 and for .r > 5.

The goal is to find a particular function .ψ(r) such that its values satisfy the necessary

and sufficient condition mentioned above for every value of . r . In other words, the

objective is to determine a function .ψ(r) that limits the flux .Feψ(r)(φE − φP)/2,

which, when added to the flux .FeφP , makes the scheme of higher order. For this

reason, .ψ(r) is called the limiter function.

For a limiter function to make the scheme second-order accurate, it must satisfy

the following condition:

1. .ψ(r = 1) = 1 that is, it must pass through the point with coordinates .(1, 1) of the

.r − ψ diagram,

2. for .0 < r < 1 it must be .r ≤ ψ(r) ≤ 1,

3. for .r ≥ 1 it must be .1 ≤ ψ(r) ≤ r .

Considering the first condition, it becomes clear that the upwind scheme is not second-

order accurate, while both the centred and QUICK schemes are. From the second

and third conditions, it is evident that the values of the limiter must be constrained

between those assumed for the centred scheme and those assumed for the LUD

scheme. These three conditions correspond to the shaded areas on the.r − ψ diagram

shown in Fig. 3.23. Some of the most well-known limiting functions (or flux limiters)

are now listed.

3 A. Harten, On a class of high-resolution total-variation stable finite-difference schemes, SIAM

Journal on Numerical Analysis, 21(1), 1–23, 1984.

106 3 The Finite Volume Method

Fig. 3.23 Areas of the .r − ψ diagram for which the limiting function .ψ(r) makes the scheme

accurate to the second order

• Van Leer: .ψ(r) =
r + |r |

1 + r
;

• Van Albada: .ψ(r) =
r + r2

1 + r2
;

• Min-Mod: .ψ(r) =

{

min(r, 1) f or r > 0

0 f or r ≤ 0
;

• SUPERBEE: .ψ(r) = max[0,min(2r, 1),min(r, 2)];

• Sweby: .ψ(r) = max[0,min(βr, 1),min(r,β)];

• QUICK: .ψ(r) = max[0,min(2r, (3 + r)/4, 2];

• UMIST: .ψ(r) = max[0,min(2r, (1 + 3r)/4, (3 + r)/4), 2].

All the listed limiters have values in the TVD part of the .r − ψ graph and pass

through the point (1,1) on the same graph, making them all TVD second-order

accurate schemes. It is noted that Van Leer and Van Albada are continuous functions,

while the others are piecewise linear functions. The Min-Mod function represents

the lower edge of the TVD part of the .r − ψ graph, while the SUPERBEE function

captures its upper edge. The Sweby limiter combines Min-Mod and SUPERBEE

using the parameter . β: for .β = 1, it yields the Min-Mod, and for .β = 2, it gives the

SUPERBEE. Typically, the Sweby limiter is used with .β = 1.5.

3.1.7.3 Implementation of TVD Schemes

In this regard, the one-dimensional convection-diffusion equation is considered:

.

d

dx
(ρuφ) =

d

dx

(

Ŵ
dφ

dx

)

.

Referring to Fig. 3.1, the discretised form of the equation is given by:

3.1 Convective-Diffusive Fluxes 107

.Feφe − Fwφw = De (φE − φP) − Dw (φP − φW) . (3.31)

In the case of velocity .u > 0, using the TVD approach, the coefficients .φe and . φw

can be expressed as

. φe = φP +
1

2
ψ(re)(φE − φP),

φw = φW +
1

2
ψ(rw)(φE − φW),

with re =
φP − φW

φE − φP

and rw =
φW − φW W

φP − φW

.

Recalling that . r represents the ratio between the upwind gradient of . φ and the down-

wind gradient of . φ, .ψ(re) and .ψ(rw) can take the form of one of the flux-limiting

functions listed above. By substituting the two expressions for .ψ(re) and .ψ(rw) into

Eq. 3.31, it becomes:

. (De + Fe + Dw)φP =

(Dw + Fw) φW + DeφE − Fe

[
1

2
ψ (re) (φE − φP)

]

+ Fw

[
1

2
ψ (rw) (φP − φW)

]

.

To highlight the coefficients of .φP , .φW , and .φE , as well as the source term, the

equation can be rewritten as:

. aPφP = aW φW + aEφE + SDC
u

with

. aP = aW + aE + (Fe − Fw)

aW = Dw + Fw

aE = De

SDC
u = −Fe

[
1

2
ψ (re) (φE − φP)

]

+ Fw

[
1

2
ψ (rw) (φP − φW)

]

.

It can be noted that the coefficients.aP ,.aW , and.aE are identical to those of the upwind

scheme, which ensures the stability of the TVD scheme. The additional flux term that

makes the scheme second-order accurate, and which contains the limiting function,

is expressed in the form of source terms with deferred correction—hence the DC

superscript. As discussed in Sect. 3.1.6, this avoids the possibility of negative values

appearing for the coefficients, which could destabilise the solution. In this manner,

the behaviour of the final solution remains TVD. To indicate the case with velocity

.u > 0, the source term can be rewritten using the superscript . + for the term . r :

108 3 The Finite Volume Method

. SDC
u = −Fe

[
1

2
ψ

(

r+
e

)

(φE − φP)

]

+ Fw

[
1

2
ψ

(

r+
w

)

(φP − φW)

]

.

In the case of velocity .u < 0, using the TVD approach, the coefficients .φe and . φw

can be expressed as:

. φe = φE +
1

2
ψ(r−

e)(φP − φE),

φw = φP +
1

2
ψ(r−

w)(φW − φP),

with r−
e =

φE E − φE

φE − φP

and r−
w =

φE − φP

φP − φW

In this case, the superscript . − is used to indicate the negative value of the velocity.

By substituting the two expressions now found for .ψ(r−
e) and .ψ(r−

w) into Eq. 3.31,

and highlighting the coefficients of .φP , .φW , and .φE as well as the source term, it

becomes:

. aPφP = aW φW + aEφE + SDC
u

with

. aP = aW + aE + (Fe − Fw) ,

aW = Dw,

aE = De − Fe,

SDC
u = −Fe

[
1

2
ψ

(

r−
e

)

(φE − φP)

]

− Fw

[
1

2
ψ

(

r−
w

)

(φP − φW)

]

.

For implementation purposes, a single expression is used to encompass both cases,

.u > 0 and .u < 0:

. aP = aW + aE + (Fe − Fw) ,

aW = Dw + max (Fw, 0) ,

aE = De + max (−Fe, 0) ,

SDC
u =

1

2
Fe

[

(1 − αe)ψ
(

r−
e

)

− αeψ
(

r+
e

)]

(φE − φP)

+
1

2
Fw

[

αwψ
(

r+
w

)

− (1 − αw) ψ
(

r−
w

)]

(φP − φW)

with

.αw = 1 f or Fw > 0 ; αe = 1 f or Fe > 0

αw = 0 f or Fw < 0 ; αe = 0 f or Fe < 0.

3.2 Reconstruction 109

3.1.8 The Case of Unstructured Grids

The interpolation schemes discussed so far were initially developed for orthogonal

structured grids. In the case of unstructured grids, determining the cell centres to be

used in the application of the scheme becomes more complicated, as they do not all

lie on the same line. One approach to address this problem involves reformulating

the schemes of interest in terms of the gradient .∇φP of the transported quantity

. φ at the cell centre and the gradient at the considered face, .∇φ f . For the upwind

scheme, it will be.φ f = φP . For linear interpolation, it will be.φ f = φP + ∇φ f · dP f ,

where .dP f is the vector connecting the cell centre .P with the face centre . f . For the

linear upwind scheme, .φ f = φP +
(

2∇φP − φ f

)

· dP f . It is evident that, in this

case, accurately calculating the value of the gradient of . φ both at the cell centre (see

Sect. 3.4) and at the centroid of the considered face (see Sect. 3.4.1) is fundamental.

An alternative approach is described below and is implemented in most commercial

solvers. Known as Barth and Jespersen’s method, this scheme involves the use of a

limiter. Specifically, it will be:

. φ f =

{

φP + ψ f ∇φP · dP f f or F ≥ 0,

φN + ψ f ∇φN · dN f f or F < 0.

The symbol .ψ f represents the limiter, which is necessary to avoid overestimates or

underestimates resulting from the calculation of the gradient at the cell centre.

3.2 Reconstruction

The application of the finite volume method results in a set of cells within which the

value of the considered quantity is assumed to be constant, leading to a piecewise

constant behaviour. In practice, this results in the loss of information regarding the

spatial distribution within each cell. Given that the values are only known at the

corresponding cell centres, the objective of the reconstruction process is to recover

the spatial distribution of the considered quantity inside the cell using continuous

functions, which are typically represented by polynomials of varying degrees. A

fundamental constraint that these polynomials must satisfy is that they must be con-

servative, meaning that their average value within the cell must equal the value at

the cell centre. Each cell has a distinct polynomial, determined based on the values

assumed by the quantity at the centres of adjacent cells. The selection of these cell

centres for polynomial construction defines what is referred to in the scientific liter-

ature as the stencil. The number of cell centres considered in this process determines

the degree of the polynomial. When the stencil remains the same for every cell,

the approach is referred to as linear reconstruction. This is the case for the central

differencing, linear upwind, and QUICK schemes previously discussed. The use of

110 3 The Finite Volume Method

numerical schemes with an order of accuracy higher than the first becomes neces-

sary when discretising equations that give rise to strong gradients or discontinuities,

even when the initial solutions do not exhibit such features. In general, the error in

computing the numerical solution increases significantly as the variation of the con-

sidered quantity approaches the minimum resolvable by the computational grid. For

equations that always ensure smooth solutions, even when starting from continuous

initial conditions, the numerical error can be reduced by refining both the spatial res-

olution and the time integration step. However, for equations—such as the Burgers

equation (Eq. 1.10)–that can develop discontinuous solutions even from continu-

ous initial conditions, such an approach does not yield satisfactory results. In these

cases, numerical schemes with higher-order accuracy are required. Higher-order

schemes inevitably introduce unwanted spurious numerical oscillations, particularly

near strong gradients or discontinuities. To minimise these oscillations as much as

possible, specialised techniques have been developed, among which the non-linear

reconstruction approach is notable. In non-linear reconstruction, different stencils

are used depending on the considered cell. Examples of this approach include the

TVD schemes, the Essentially Non-Oscillatory (ENO) schemes, and the Weighted

Essentially Non-Oscillatory (WENO) schemes, which are discussed below.

3.2.1 Essentially Non Oscillatory (ENO) Schemes

This interpolation method is particularly suitable for cases where the considered

quantity exhibits discontinuities or strong gradients. As observed in the QUICK

scheme, classical interpolation methods employ an interpolating polynomial of

degree . n that passes through each of the .n + 1 centres of the considered stencil.

In contrast, the present approach utilises a single global interpolation polynomial.

In the ENO approach, multiple polynomials of degree less than . n are considered,

each characterised by the following properties:

• local definition: each polynomial is defined within the interval determined by the

considered stencil;

• conservativeness: dividing the integral of the considered polynomial, limited to

the extent of the given cell, by the cell’s extent yields the value of the quantity at

the cell centre, which was used to construct the polynomial itself. Considering the

one-dimensional case of cell . i , let .φi be the value of the considered quantity at the

cell centre. The cell . i has an extent .�x , bounded by the points .xi−1/2 and .xi+1/2.

The conservativeness property of the interpolating polynomial .pi (x) is expressed

as

.

1

�x

∫ xi+1/2

xi−1/2

pi (x)dx = φi ;

• adaptability: the selection of the polynomial to be used must depend on the values

assumed by the quantity at the centres belonging to the considered stencil.

3.2 Reconstruction 111

Fig. 3.24 Cells of one-dimensional discretised computational domain

Fig. 3.25 Cell centres (in gray) used for the construction of the polynomial . pi
0

To better understand this approach, and with reference to Fig. 3.24, consider the case

of a one-dimensional domain with a stencil consisting of five cell centres used to

determine the value of the quantity at the interface between two cells.

The classical approach in this case prescribes the determination of a single global

interpolating polynomial of fourth degree, passing through the five cell centres that

define the considered stencil. The ENO approach, on the other hand, establishes that

if second-degree polynomials (thus achieving third-order accuracy) are preferred,

three different polynomials must be determined, each constructed on three different

centres of the stencil shown in Fig. 3.24. To determine the value of the quantity . φ

at the interface . e, recalling the concepts introduced for the QUICK scheme in Sect.

3.1.6, the first second-degree polynomial that can be considered, denoted as .p
(0)
i , is

the one whose value coincides with that of . φ at the centres .i − 2, .i − 1, and . i (see

Fig. 3.25). This polynomial leads to the following expression:

.φ(0)
e =

3

8
φi−2 −

10

8
φi−1 +

15

8
φi . (3.32)

The second second-degree polynomial, denoted as .p
(1)
i , that can be considered is the

one whose value coincides with that of . φ at the centres .i − 1, . i , and .i + 1 (Fig. 3.26).

This polynomial leads to the following expression:

.φ(1)
e = −

1

8
φi−1 +

6

8
φi +

3

8
φi+1. (3.33)

The third second-degree polynomial, denoted as .p
(2)
i , that can be considered is the

one whose value coincides with that of . φ at the centres . i , .i + 1, and .i + 2. This

polynomial leads to the following expression (Fig. 3.27):

.φ(2)
e =

3

8
φi +

6

8
φi+1 −

1

8
φi+2. (3.34)

Notice that by substituting . i with the value .i − 1 in the subscripts of Eqs. 3.32,

3.33, and 3.34, the corresponding values of .φ(0)
w , .φ(1)

w , and .φ(2)
w are obtained. For the

selection of the single value among the three obtained to be used, the ENO method

112 3 The Finite Volume Method

Fig. 3.26 Cell centres (in gray) used for the construction of the polynomial . pi
1

Fig. 3.27 Cell centres (in grey) used for the construction of the polynomial . pi
2

defines the smoothness indicator .β(k), which is defined for each of the polynomials

.p
(0)
i , .p

(1)
i , and .p

(2)
i as

.βk =

n
∑

j=1

�x2 j−1

∫ i+1/2

i−1/2

(
d j

dx j
p

(k)

i (x)

)2

dx (3.35)

and calculated at the considered interface. In Eq. 3.35, .p
(k)

i is the polynomial of

degree . n (.n = 2 in this case) with the value at . i equal to that of . φ at the cell centre

. i , associated with the sub-stencil . k (where .k = 0, 1, 2 in this case). The smoothness

factor is, in fact, the sum of the squares of the derivatives of the polynomials .p
(k)

i : the

polynomial characterised by lower gradients will have a lower smoothness factor.

For the second-degree polynomials considered in this example, at the interface . e, it

will be:

. β0
e =

1

3

(

4φ2
i−2 − 19φi−2φi−1 + φ2

i−1 + 11φi−2φi − 31φi−1φi + 10φ2
i

)

,

β1
e =

1

3

(

4φ2
i−1 − 13φi−1φi + 13φ2

i + 5φi−1φi+1 − 13φiφi+1 + 4φ2
i+1

)

,

β2
e =

1

3

(

10φ2
i − 31φiφi+1 + 25φ2

i+1 + 11φiφi+2 − 19φi+1φi+2 + 4φ2
i+2

)

.

Once again, by substituting . i with the value .i − 1 in the subscripts of the expressions

for.βk
e , the expression for.β

k
w is obtained. The polynomial characterised by the lowest

value of the smoothness factor at the considered interface will determine the choice

of the value of . φ to be attributed to the interface . e. Notice that in this way, only

one of the three values, .φ(0)
e , .φ(1)

e , .φ(2)
e , will be used, and the remaining two will be

discarded.

3.2.2 Weighted Essentially Non Oscillatory (WENO) Schemes

These types of schemes are derived from the ENO schemes. The main difference

between ENO and WENO schemes is that the latter take into account the information

produced by the interpolating polynomials, which, having a high smoothness factor,

3.2 Reconstruction 113

are discarded in the ENO schemes. To better understand this type of scheme, consider

the example presented in the previous section related to the ENO schemes. In partic-

ular, it is observed that the total number of cell centres used is five. With this number

of points, a global interpolation polynomial of fourth degree (fifth order of accuracy)

could be constructed. The basis of the WENO method is that the global fourth-

degree polynomial can be written as a linear combination of the three second-degree

polynomials, .p
(0)
i , .p

(1)
i , and .p

(2)
i :

. φe = γ0φ
(0)
e + γ1φ

(1)
e + γ2φ

(2)
e

In this case, the coefficients. γ0,. γ1, and.γ2must satisfy the condition. γ0 + γ1 + γ2 = 1

and are known as linear weights. To achieve a fifth-order accuracy, the values are

. γ0 =
1
16
, .γ1 = 5

8
, and .γ2 = 5

16
. In the absence of discontinuities, or strong gradients,

of . φ in the interval defined by the (in this example, five) cells identified for the

definition of the polynomials, considering the polynomials .p
(0)
i , .p

(1)
i , and .p

(2)
i leads

to equivalent results as employing a single fifth-degree polynomial. However, in

the presence of a discontinuity, this is no longer the case. As previously seen, the

ENO method uses the smoothness coefficient to choose the polynomial capable of

ensuring the maximum accuracy order (in this example, the third). In contrast, the

WENO method determines the best approximation as a convex combination of the

three values .φ(0)
e , .φ(1)

e , and .φ(2)
e . It is worth recalling that a convex combination is

a linear combination of elements made with non-negative coefficients summing to

one:

. φe = ω0φ
(0)
e + ω1φ

(1)
e + ω2φ

(2)
e

with .ω0 + ω1 + ω2 = 1 and .ωk � 0 for .k = 0, 1, 2. The coefficients .ωk are called

non-linear weights. In calculating the value of the nonlinear weights, it is necessary

to keep in mind the following constraints:

• .ωk ≈ γk for .k = 0, 1, 2 in the case where . φ does not have a discontinuity in the

stencil consisting of all five cell centres;

• .ωk ≈ 0 for .k = 0, 1, 2 in the case where . φ has a discontinuity in the stencils

consisting of the three cell centres used to construct the polynomials .p
(k)

i , except

for one (i.e., in at least one of the three stencils there must not be a discontinuity).

Given these constraints, the non-linear weights are defined as

. ωk =
ω̃k

ω̃0 + ω̃1 + ω̃2

with ω̃k =
γ j

(ǫ + βk)
2

in which . ǫ is a constant necessary to avoid the case of a zero denominator: the value

typically associated with it is .10−6.

114 3 The Finite Volume Method

3.3 Interpolation of Diffusive Fluxes

In this case, it is necessary to calculate, at the centroid of the face, the component of

the gradient of the transported quantity along the direction normal to the face itself.

In fact, referring to Eq. 3.3, it is possible to write

.

∫

VP

∇ · (ρŴφ∇φ) dV ≈
∑

f

S f · (ρŴφ∇φ) f =

∑

f

S f · (ρŴφ∇φ) f =
∑

f

ρ f

(

Ŵφ

)

f

∣
∣S f

∣
∣

(
∂φ

∂n

)

f

(3.36)

In this case, the term .

(

Ŵφ

)

f
represents the diffusivity coefficient, which, depending

on . φ, could be either viscosity or thermal diffusivity, calculated at the centroid of

the face. The value of .
(

Ŵφ

)

f
can be obtained using one of the interpolation schemes

described above (e.g. central differencing, upwind, etc.).

Given the values of . φ at the centres of the two cells to which the face belongs, it is

possible to calculate the component.(∂φ/∂n) f of the gradient.∇φ f on the face, along

the direction defined by the two centres. In the case where this direction coincides

with the normal to the face (see Fig. 3.28), it will not be necessary to calculate any

additional components. However, if the directions of the normal to the face and

the line joining the two centres do not coincide (see Fig. 3.29), the angle between

these two directions is referred to as non-orthogonality. In the presence of non-

orthogonality, the vector normal to the face can be decomposed into two components.

The first, known as the normal component, is along the direction joining the centres

of the two cells to which the face belongs. The second component, determined by

the chosen decomposition method, is referred to as transverse diffusion or “cross

diffusion”.

In the case of two cells of an orthogonal grid, as shown in Fig. 3.28, the diffusive

flux can be calculated with a second-order approximation using a centred difference.

.S · ∇φ f = |S|
φN − φP

|d|
(3.37)

Fig. 3.28 Orthogonal grid

3.3 Interpolation of Diffusive Fluxes 115

Fig. 3.29 Non-orthogonal

grid

where S is the vector normal to the face, .φN is the value of . φ in the centre of cell N,

.φP is the value of . φ in the centre of cell P, and d is the vector connecting the two cell

centres.

In the case of a non-orthogonal grid (see Fig. 3.29), the vector S can be decomposed

into its components along two directions:

• the direction connecting the two cell centres identified by the unit vector . �;

• the direction parallel to that of the face and identified by the unit vector . k.

Indicating with . n̂ the unit vector normal to the face it is .n̂ = � + k (see Fig. 3.30).

At this point, it is possible to write Eq. 3.36 as

.

∑

f

S f · (ρŴφ∇φ) f =
∑

f

∣
∣S f

∣
∣
[

(ρŴφ∇φ) f · n̂ f

]

=
∑

f

S f

[

(ρŴφ∇φ) f · n̂ f

]

in which . n̂ is the unit vector of the vector . S. That is

.

∑

f

S f

[

(ρŴφ∇φ) f · n̂ f

]

=
∑

f

S
[

(ρŴφ∇φ) f · (� + k) f

]

=

∑

f

S f

[

(ρŴφ∇φ) f · � f

]

+
∑

f

S f

[

(ρŴφ∇φ) f · k f

]

. (3.38)

In Eq. 3.38, the orthogonal term is clearly visible

.

∑

f

S f

[

(ρŴφ) f ∇φ f · � f

]

Fig. 3.30 Over-relaxed

decomposition method

116 3 The Finite Volume Method

and the non-orthogonal term, also called non-orthogonal correction,

.

∑

f

S f

[

(ρŴφ) f ∇φ f · k f

]

.

The orthogonal term can be calculated considering that

. ∇φ f · � = |�|
φN − φP

|d|
.

As demonstrated in Sect. 3.1, the discretisation process leads to the formulation of

a discretised conservation equation for each grid element. The equations for all the

elements are then reorganised to form a system, where each row contains the ele-

ments of the discretised conservation equation calculated at the centre of the generic

cell. The elements on the main diagonal correspond to quantities related to the centre

of the cell, while the off-diagonal elements represent quantities related to the centres

of adjacent cells. The contribution of the orthogonal term appears in the coefficient

matrix of this system of equations and can therefore be solved implicitly, which

enhances the numerical stability of the solution process. Conversely, the contribu-

tion of the non-orthogonal term (.∇φ f · k) acts as a source term, appearing in the

column vector of known terms. As a result, it must be solved explicitly, considering

the values of . φ calculated at the previous iteration or determined from the initial

conditions. This explicit calculation, however, contributes to a reduction in the sta-

bility of the numerical solution process. As the level of non-orthogonality between

the cells increases, the relative magnitude of the non-orthogonal terms grows, which

in turn decreases the stability of the numerical solution. To mitigate the effects of the

non-orthogonal contribution, two approaches can be considered:

1. generate a computational grid with a low degree of non-orthogonality.

2. artificially limit the value of the non-orthogonal contribution so that it does

not exceed the value of the orthogonal contribution or a fraction thereof (see

Sect. 6.1.4).

Regarding point 2, it is important to specify that a greater artificial reduction of

the non-orthogonal contribution corresponds to greater stability, but also to reduced

accuracy, which is acceptable if the number of cells with high non-orthogonality

remains relatively small. It should be noted that, given the vector . S and, therefore, its

unit vector . n̂, as well as the direction of the vector . �—determined by the line con-

necting the two cell centres to which the considered face belongs—the possibilities

for the decomposition of . S are infinite. Among these, we highlight two approaches:

1. the minimum correction method, which ensures that the vectors .� and . k are

orthogonal,

2. the over-relaxed approach, illustrated in Fig. 3.30, which ensures that the vectors

. S and . k are orthogonal.

3.3 Interpolation of Diffusive Fluxes 117

The over-relaxed approach offers greater numerical stability because, as the non-

orthogonality level increases, both the non-orthogonal and orthogonal compo-

nents increase. In contrast, in the minimum correction approach, as the level of

non-orthogonality increases, the non-orthogonal component increases while the

orthogonal component decreases. In summary,

. (∇φ) f · k f = (∇φ) f ·
(

S f − d f

)

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(∇φ) f ·
(

n̂ − d̂ cos θ
)

S f minimum correction,

(∇φ) f ·
(

n̂ − d̂
)

S f normal correction,

(∇φ) f ·

(

n̂ − d̂
1

cos θ

)

S f over-relaxed

where .S = n̂S is the vector normal to the face, . d is the vector connecting the two cell

centres, and . d̂ is its unit vector. Additionally, . k represents the vector of transverse

diffusion, and . θ is the angle formed between the line connecting the two cell centres

and the direction normal to the face. It is clear that the transverse diffusion term

cannot be calculated using the values of. φ at the cell centres. Therefore, the calculation

proceeds by first determining the gradient.∇φ at the cell centres and then interpolating

to obtain its value on the face, .(∇φ) f (see Fig. 3.2).

. (∇φ) f = fx (∇φ)P + (1 − fx) (∇φ)N

where the gradients at the two cell centres are calculated using Eq. 3.40. This method

of calculating the gradient on the face is also referred to as the Green-Gauss method

(Green-Gauss cell-based gradient), and it is second-order accurate. Once the value

of the transverse diffusion term is obtained, it is added to the algebraic equation of the

cell as a source term. In summary, for orthogonal grids (see Fig. 3.28), the diffusive

flux can be calculated using a second-order accurate approximation via Eq. 3.37. In

the case of a non-orthogonal grid (see Fig. 3.29), the vector . S can be calculated as

the sum of two vectors (see Fig. 3.30). In the over-relaxed method, it turns out to be

. � =
d

d · S
|S|2.

From which

.S · (∇φ) f = |�|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal contribution

+

contribution non orthogonal
︷ ︸︸ ︷

k · (∇φ) f (3.39)

118 3 The Finite Volume Method

3.4 Calculation of the Gradient at the Cell Centre

The computation of the gradient at the cell centre is essential for both the application

of discretisation schemes for the convective terms of the general transport equation

(see Sect. 6.1.2) and for the discretisation of specific terms (e.g., the gradient of

the pressure) that appear in the discretised momentum conservation equation (see

Eq. 2.42). Moreover, the calculation of the velocity gradient at the cell centre is

necessary for determining the production terms of turbulent kinetic energy in turbu-

lence modelling or for the determination of shear stress in flows with non-Newtonian

fluids. A widely used approach for calculating the gradient is based on the Gauss

theorem (see Sect. 1.1.6), which states that, for each closed volume .V bounded by

a surface .∂V , the integral of the gradient of a generic quantity (scalar or vector) . φ

over the volume .V is equal to the integral of . φ over the surface .∂V . In mathematical

terms:

.

∫

V

∇φ dV =

∮

∂V

φ dS

in which .dS is the vector normal to the surface, representing the generic elementary

surface element. To discretise this equation, the mean value theorem can be applied

(see Sect. 1.5.2) to the left-hand side.

.

∫

V

∇φ dV ≈ ∇φV

where .∇φ is the average value of the gradient within the volume . V . Therefore, it can

be expressed as

. ∇φ ≈
1

V

∮

∂V

φ dS

and for the generic cell with centroid . P

. ∇φP ≈
1

VP

∮

∂VP

φ dS.

Then, by applying the mean value theorem to the faces that bound the cell, it becomes

.∇φP ≈
1

VP

∑

f ∼nb(P)

φ f S f (3.40)

where we have set .∇φP = ∇φP . .nb(P) is the number of faces that delimit the cell

with centroid . P , .φ f is the average value of . φ on the generic face . f of cell . P , and

.S f is the vector exiting from cell . P , normal to face . f , with the area of . f as its

magnitude.

3.4 Calculation of the Gradient at the Cell Centre 119

The calculation of .φ f can be performed using two possible approaches: the first,

known as cell-based, and the second, known as node-based.

Referring to Fig. 3.31, in the cell-based approach, it is

.φ f = gPφP + (1 − gP)φN (3.41)

where .φP is the value of . φ at the centroid of the considered cell, .φN is the value of

. φ at the centroid of the cell that shares face . f with the considered cell, and .gP is the

weight factor that depends on the geometric characteristics of the two cells sharing

the considered face:

. gP =
dP f

d

where .dP f is the distance between the centroid .P of the considered cell and the

centroid of face . f , while . d is the distance between .P and the centroid .N of the

cell that shares face . f with the cell of centroid . P . Equation 3.41 is a second-order

accurate approximation only in the case where the intersection between face . f and

the line connecting the two centroids .P and .N coincides with the centroid of the

face. This condition is not satisfied in most non-orthogonal structured grid cases, as

well as in most unstructured grid cases. Referring to Fig. 3.31, where . f denotes both

the face considered and its centroid, and . f ′ denotes the intersection between face . f

and the line connecting the two centroids .P and . N , the “skewness error” is defined

as the distance between . f and . f ′. Therefore, in the case of non-zero skewness error,

Eq. 3.41 will provide the value of .φ f ′ . In the case of grids characterised by high

skewness error values, one can use the node-based approach, in which the value of

.φ f is obtained as the average of the . φ values at the vertices of the face considered.

The value at the vertices is in turn determined by calculating the weighted average

of . φ at the centres of the cells sharing the considered vertex.

The value of . φ at the vertex . n of the face considered can be obtained using the

following formula

Fig. 3.31 Distortion and

non-orthogonality

120 3 The Finite Volume Method

. φn =

N B(n)
∑

k=1

φFk

‖rn − rFk
‖

N B(n)
∑

k=1

1

‖rn − rFk
‖

where .φFk
denotes the value of . φ on the .k-th face to which the considered vertex

belongs, calculated by simple linear interpolation between the values of . φ at the

centres of the two cells to which the .k-th face belongs. .N B(n) is the total number of

cells to which the considered vertex belongs, and .‖rn − rFk
‖ is the distance between

the vertex . n and the centroid of the considered cell. Once the values at all the vertices

of the considered face are known, the face is divided into triangles, each of which

has for vertices two vertices of the face and the intersection point between the face

and the line connecting the two centres of the cells to which the face belongs. In

the presence of skewness error, this last point does not coincide with the centroid

of the face. For each triangle, the average value .φT of the values at the vertices is

calculated. Subsequently, the value .φ f of the quantity on the face is obtained as a

weighted average, as follows:

. φ f =

∑

ST φT

S f

where .ST is the area of each triangle and .S f is the area of the considered face.

This approach entails a computational burden due to the necessity of managing the

information associated with the vertices of the faces. However, it provides greater

accuracy in the presence of distorted cells, given its independence from the distortion

error. Another method for computing the gradient at the cell centre is known as the

Least-Squares Fit (LSF). Consistent with the constraint of second-order accuracy,

this method assumes a linear variation of the quantity . φ and defines an error function

for each neighbouring cell .N surrounding the considered cell . P:

. ǫN = φN −
[

φP + d · (∇φ)P

]

where the vector. d connects the two cell centres. P and. N . It then proceeds to minimise

the mean squared error (least-squares error) defined as

. ǫ2P =
∑

N

w2
N ǫ2N

in which the weight function .w is defined as .wN = 1
|d|
. The expression used for the

calculation of the gradient at the centre of cell .P is

. (∇φ)P =
∑

N

w2
NG

−1 · d (φN − φP)

3.5 Calculation of the Time Derivative or Transient Term 121

with

. G =
∑

N

w2
Ndd.

This calculation method, like the vertex-based method, is unaffected by the distortion

error, which, in contrast, influences the results obtained using the cell-based approach.

3.4.1 Calculation of the Gradient on the Centroid of the Faces

As observed, the need to perform this calculation arises from the discretisation pro-

cess of the diffusive terms of the general transport equation, particularly when the

computational grid contains non-orthogonal cells. In such cases, it is necessary to

calculate the value of the non-orthogonal correction term. One possible approach for

calculating the gradient at the centroid of the faces involves correcting the average

gradient value computed at the centres of the two cells to which the face belongs.

Specifically, with reference to Fig. 3.31, the gradient of . φ at the centroid of the face,

denoted as .∇φ f , will be

. ∇φ f = ∇φ f +

[
φN − φP

d
−

(

∇φ f · e
)
]

e

in which

. ∇φ f = gP∇φP + gN ∇φN , gP =
dP f

d
, gN =

dN f

d
e =

d

d
, d = rN − rp

with . e being the unit vector of the vector . d, .rP the position vector of the cell centre

. P , and .rN the position vector of the cell centre . N .

3.5 Calculation of the Time Derivative or Transient Term

Typically, the evolution of a quantity . φ is described by an equation of the type

.

∂ (ρφ)

∂t
+ L(φ) = 0

in which the term .L(φ) is an operator that includes all terms (convection, diffusion,

sources, etc.) that are not dependent on time. Integrating over the cell with centroid

. C , we obtain

.

∫

VC

∂ (ρφ)

∂t
dV +

∫

VC

L(φ) dV = 0

122 3 The Finite Volume Method

and discretising in space, we obtain

.

∂ (ρCφC)

∂t
VC + L(φt

C) = 0

where.VC is the cell volume, while.L(φt
C) is the spatial discretisation operator at time

. t . Traditionally, the approach used for time discretisation involves the application of

finite differences, where the Taylor series expansion of the term .

∂ (ρφ)

∂t
is employed

to express the derivative in terms of the values at the cell centres. The finite volume

method, on the other hand, involves applying strategies similar to those used in the

spatial discretisation of the convective term, but instead of integrating in space, the

integration is performed in time. To better understand this approach, consider a two-

dimensional computational domain in which only one direction of integration in

space is considered. This integration in space will correspond to the time evolution.

Let .�t denote the time integration interval.

• The value at the centre of the spatial discretisation cell corresponds to the value

of . φ at a specific time instant . t ;

• The value on the faces of the spatial discretisation cell corresponds to the value of

. φ at the instant .t ± �t/2.

The time discretisation cell will therefore have its centre positioned at the time coor-

dinate. t , and its two faces at the time coordinates.t − �t/2 and.t + �t/2. Integrating

then over the time interval .[t − �t/2, t + �t/2] it is (Fig. 3.32)

.

∫ t+�t/2

t−�t/2

∂ (ρCφC)

∂t
VC dt +

∫ t+�t/2

t−�t/2

L(φC)dt = 0.

Considering that .VC is constant over time, the first integral results in a simple dif-

ference, while, by applying the rule of the average value, the second integral yields

only the value of the integrand at time . t .

. VC (ρCφC)t+�t/2 − VC (ρCφC)t−�t/2 + L(φt
C)�t = 0.

Fig. 3.32 Temporal

discretisation

2

2

t

t-

t+ t

t

t+

t
t-

t

tt

3.5 Calculation of the Time Derivative or Transient Term 123

Dividing by .�t , we obtain

.

(ρCφC)t+�t/2 − (ρCφC)t−�t/2

�t
VC + L(φt

C) = 0 (3.42)

From this, it is clear that interpolation between the values at times . t , .t − �t , etc., is

required to obtain the values at the “intermediate” times.t − �t/2 and.t + �t/2. Just

as in the case of spatial discretisation of convective terms, the choice of interpolation

method will influence the accuracy of the results.

3.5.1 Implicit Euler Scheme

This time integration scheme is derived from the upwind spatial integration scheme.

It is, in fact, assumed that

. (ρCφC)t+�t/2 = (ρCφC)t and (ρCφC)t−�t/2 = (ρCφC)t−�t .

Substituting into Eq. 3.42, we obtain

.

(ρCφC)t+�t − (ρCφC)t

�t
VC + L(φt

C) = 0.

3.5.2 Crank-Nicolson Scheme or Central Difference Profile

This time integration scheme performs a linear interpolation between the value of

the quantity at time .t − �t and the value at time .t + �t . It is, therefore,

. (ρCφC)t+�t/2 =
1

2
(ρCφC)t+�t +

1

2
(ρCφC)t ,

(ρCφC)t−�t/2 =
1

2
(ρCφC)t +

1

2
(ρCφC)t−�t .

Substituting into Eq. 3.42, we obtain

.

(ρCφC)t+�t − (ρCφC)t−�t

2�t
VC + L(φt

C) = 0.

124 3 The Finite Volume Method

3.5.3 Backward Scheme or Second Order Upwind Euler

This time integration scheme is derived from the linear upwind spatial integration

scheme. In fact, we set

. (ρCφC)t+�t/2 =
3

2
(ρCφC)t −

1

2
(ρCφC)t−�t ,

(ρCφC)t−�t/2 =
3

2
(ρCφC)t−�t −

1

2
(ρCφC)t−2�t .

Substituting into Eq. 3.42, we obtain

.

3 (ρCφC)t − 4 (ρCφC)t−�t + (ρCφC)t−2�t

2�t
VC + L(φt

C) = 0.

Chapter 4

Linear Systems and Their Solution

In the previous chapter, we observed that the discretisation process results in a dis-

cretised conservation equation for each of the .N grid elements. It is possible (see

Sect. 3.1.1) to assemble the equations corresponding to all .N elements into a system

of equations, which, in its compact form, can be written as

.Aφ = b. (4.1)

In the following representation, the elements of the main diagonal correspond to the

contribution of the generic cell and are represented by black squares. White squares

denote the off-diagonal elements of the matrix, which account for the contributions

of adjacent elements that share at least one face with the considered cell. The first row

corresponds to the first cell of the discretised domain, while the last row represents

the last cell. Since each cell shares a limited number of faces with its neighbouring

cells, most elements of the matrix .A will be zero. In the case of structured grids,

the non-zero elements will be arranged along the main diagonal and the secondary

diagonals.

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 � �

� � � �

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

� � aC � �

. . .
. . .

. . .
. . .

� � � �

� � aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

φC

...

φN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
...

bC

...

bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_4

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4
https://doi.org/10.1007/978-3-031-88957-8_4

126 4 Linear Systems and Their Solution

Fig. 4.1 Example of a

structured grid

0

3

21

4 5

Z

X

Y

Fig. 4.2 Computational

domain

An example of a structured grid comprising six hexahedral cells is shown in Fig. 4.1.

The edges of cell 3 are highlighted with a thicker line, while the faces of cell 1 that

are shared with other cells are shaded. For this grid, the coefficient matrix can be

assembled as shown in Fig. 4.2.

The coefficients resulting from the application of the generic conservation equa-

tion to a single cell are all placed in a single row. By ordering the rows consistently

with the numbering assigned to the cells, the coefficients associated with cell 0 will

be placed in row 0 of the matrix, those related to cell 1 in row 1, and so forth.

Cell 0 shares one face with cell 1 and another with cell 3. Therefore, the com-

putation of fluxes through these two faces is required for the discretisation of the

considered conservation equation applied to this cell. Consequently, the terms .a01—

corresponding to the fluxes through the face shared between cell 0 and cell 1—and

.a03—corresponding to the fluxes through the face shared between cell 0 and cell

3—will be non-zero. Faces that belong exclusively to a single cell are referred to as

“boundary” faces. Subsequently, specific boundary conditions applied to these faces

will be considered.

.

⎡
⎢⎢⎢⎢⎢⎢⎣

a00 a01 0 a03 0 0

a10 a11 a12 0 a14 0

0 a21 a22 0 0 a25

a30 0 0 a33 a34 0

0 a41 0 a43 a44 a45

0 0 a52 0 a54 a55

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.2)

It can be observed that the coefficient matrix is significantly influenced by the

properties of the grid:

• the number of cells in the grid corresponds to the size of the matrix and thus to

the number of elements on the main diagonal.

4.1 The Jacobi Method 127

• the number of non-zero coefficients above the main diagonal is equal to the number

of non-zero coefficients below it, and both are equal to the number of internal faces

of the grid.

• each coefficient on the main diagonal corresponds to the associated cell (identified

by the row number).

• the coefficients outside the main diagonal are associated with the cells (identified

by the column number) adjacent to the given cell.

Finding the values of the unknowns .φi in Eq. 4.1 requires inverting the matrix A,

yielding .φ = A−1b. Among the characteristics that the coefficient matrix A must

satisfy, the most important being the values of the coefficients themselves, as they

are strongly influenced by the geometric properties of the cells, such as orthogonality

and skewness. An individual cell with unfavourable values can lead to the failure of

the inversion process (divergence). The methods for inverting a matrix can initially be

classified as direct and indirect. For reasons related to excessive computer memory

and processing requirements, the former are impractical. Indirect methods iteratively

apply a solution algorithm until the predefined level of convergence is reached, thus

eliminating the requirement to compute the final solution in a single iteration.

4.1 The Jacobi Method

This method is the simplest of the iterative methods for solving linear systems. The

solution process begins by assigning an initial guess to each element of the unknowns

column vector .φ (initialisation). Assuming that the elements of the main diagonal

are non-zero and using the initial guess values of . φ, the first equation is solved to

obtain a new estimate of. φ1, the second to obtain a new estimate of. φ2, and so on until

.φN is reached. Once the new estimate of .φN has been obtained, the first iteration

is concluded and the new values of .φ can then be used to begin a new iteration.

The iterative process continues until the difference between successive iterations is

negligible or a stopping criterion is met. The expression for the new estimate of . φ is

. φ
(n)

j =
1

ai i

⎛
⎝b j −

N∑

j=1, j �=i

ai jφ
(n−1)
j

⎞
⎠ i, j = 1, 2, 3, . . . , N

which, in matrix form, can be expressed using the following decomposition of the

coefficient matrix

128 4 Linear Systems and Their Solution

.

⎡
⎢⎢⎢⎣

a11 0 . . . 0 0

0 a22 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 aN N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

...

φN

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 a12 . . . a1N−1 a1N

a21 0 . . . a2N−1 a2N

...
... . . .

...
...

aN1 aN2 . . . aN N−1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

...

φN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
b2
...
...

bN

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The updated value .φ(n) can be obtained as

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
(n)
1

φ
(n)
2

...

(n)

...

φ
(n)

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

a11 0 . . . 0 0

0 a22 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 aN N

⎤
⎥⎥⎥⎦

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
b2
...
...

bN

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

0 a12 . . . a1N−1 a1N

a21 0 . . . a2N−1 a2N

...
... . . .

...
...

aN1 aN2 . . . aN N−1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
(n−1)
1

φ
(n−1)
2
...
...

φ
(n−1)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3)

The coefficient matrix A can be decomposed into

. A = D + L + U

where D is a diagonal matrix of order .N whose diagonal elements are the diagonal

elements of A, L is a matrix of order .N whose subdiagonal elements are the sub-

diagonal elements of A and all other elements are zero, and U is a matrix of order

.N whose superdiagonal elements are the superdiagonal elements of A and all other

elements are zero. Considering this decomposition, Eq. 4.3 can be written as

. φ(n) = D−1b − D−1 (L + U)φ(n−1).

4.2 The Gauss-Seidel Method

This method is similar to that of the Jacobi method, although it is typically preferred

due to its superior convergence properties and its lower memory storage require-

ments. Unlike the Jacobi method, this method always uses the most updated value

of each of the unknowns considered. As previously described, the resolution process

begins with the initialisation phase. Once the value of .φ1 is obtained by solving the

4.2 The Gauss-Seidel Method 129

first equation, the value of .φ2 is obtained by solving the second equation using the

value of.φ1 just calculated, rather than the initial guess, as in the Jacobi method. Once

the value of .φ2 is obtained from the second equation, the value of .φ3 is obtained by

solving the third equation using the value of .φ2 just calculated, and so on, until the

value of .φN is calculated. The expression for the new estimate of . φ is

.φ
(n)

j =
1

ai i

⎛
⎝b j −

i−1∑

j=1

ai jφ
(n)

j −

N∑

j=i+1

ai jφ
(n−1)
j

⎞
⎠ i, j = 1, 2, 3, . . . , N (4.4)

which, in matrix form, becomes

. φ(n) = − (D + L)−1 Uφ(n−1) + (D + L)−1 b.

The set of operations that results in obtaining the new value of . φ is often referred to

as a sweep. This method requires less memory capacity since the new value of each

unknown overwrites the old value, thus eliminating the need to store both the old

and new values separately.

4.2.1 Numerical Example

To better illustrate the characteristics of the Gauss-Seidel method, a numerical exam-

ple is provided. This numerical example demonstrates the solution to a linear system

resulting from the application of the finite volume method to a case of steady heat

conduction on a two-dimensional domain. In Fig. 4.2, the computational domain con-

sists of the shaded part. The boundary conditions are as follows: the left border with

a constant temperature of .100K, the right border with a constant temperature of . 0K,

and the upper and lower borders, which are adiabatic. The computational domain has

been discretised into eight cells, whose numbering is shown in Fig. 4.3. Recalling

Sect. 3.1, the equation describing the phenomenon of steady heat conduction is

.0 = ∇ · (k∇T) + S (4.5)

where . k denotes the thermal conductivity of the considered material, set to . 1 W/m ·

K. . T is the temperature, and . S is the source term, including the contribution from the

Fig. 4.3 Cell numbering

T

=
 1
0
0
K

1 2 3 4

5 6 7 8

T

=

0
K

130 4 Linear Systems and Their Solution

boundary conditions. According to the finite volume method, the discretised form of

Eq. 4.5 applied to the cell with centre P and to the neighbouring cell with centre N is

.TP

∑

f

A f k f

|xN − xP |
+
∑

f

TN

(
−

A f k f

|xN − xP |

)
= SP VP , (4.6)

where .A f is the area of the generic face (in the two-dimensional case, a length),

the distance .|xN − xP | is the distance between the centres of the two considered

cells, and .VP is the volume of the cell (in the two-dimensional case, an area). For

simplicity, the expression of Eq. 4.6 is given in the case of cell number 2 of Fig. 4.3:

. T2

(
1 · A f 12

x2 − x1
+

1 · A f 23

x3 − x2
+

1 · A f 26

y2 − y6

)
− T1

1 · A f 12

x2 − x1
− T3

1 · A f 23

x3 − x2
− T6

1 · A f 26

y2 − y6
= 0

(4.7)

The symbol .Ai j denotes the face shared between the cell centred at . i and the cell

centred at . j . Applying Eq. 4.6 to all eight cells in the computational domain results

in the following system of equations, expressed in matrix form:

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0 0 0

−1 3 −1 0 −1 −1 0 0

0 −1 3 −1 −1 0 −1 0

0 0 −1 2 0 0 0 −1

−1 0 0 0 2 −1 0 0

0 −1 0 0 −1 3 −1 0

0 0 −1 0 0 −1 3 −1

0 0 0 −1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

T7

T8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
b4
b5
b6
b7
b8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which the terms .b j represent the known terms, derived solely from the application

of the boundary conditions, since there are no sources within the computational

domain. Applying the Gauss-Seidel method, the first equation of the system (4.2)

has the form

. 2T1 − T2 − T5 = b1.

The first estimate of .T1 is obtained as

.T1 =
1

2
(T2 + T5 + b1) (4.8)

in which the initial guess values for both .T2 and .T5 are used. The algorithm then

proceeds to the second equation

. − T1 + 3T2 − T3 − T6 = b2

4.2 The Gauss-Seidel Method 131

to obtain the first estimate of .T2 using the previously calculated value for .T1 and the

initial guesses for .T3 and . T6:

.T2 =
1

3
(T1 + T3 + T6 + b2) (4.9)

Having completed the calculation of . T2, the values of the remaining temperatures

up to .T6 can be calculated, thereby concluding the first iteration (sweep). The pro-

cess is repeated until the preselected convergence criterion is reached. Note that

the Gauss-Seidel algorithm determines the updated value of the unknown—in this

case, the temperature—according to the numbering of the cells: the value of .T1 is

first calculated, then . T2, then . T3, and so on. The finite volume method then deter-

mines the value of the unknown as the weighted average of the same unknown in the

neighbouring cells, along with the contribution of the source term, which includes

the contribution from the boundary conditions (see Eqs. 4.8 and 4.9) in accordance

with the general formula (4.4). Assuming an initial condition of a temperature of . 0K

for all cells, at the first iteration, the following value of temperature is obtained for

cell . 1:

. T1 =
1

2
(0 + 0) +

1

2

100

1/2
= 100K.

The contribution to the determination of .T1 is evident from the values of cells . 2 and

. 5, as well as the boundary condition. In the case of cell . 2, only cells . 1, . 3, and . 6

contribute to determining the corresponding temperature value, and, of these, only

cell . 1 includes the contribution derived from the boundary condition:

. T2 =
1

3
(100 + 0 + 0) +

1

3
0 = 33.3K.

In the case of cell. 3, only cells. 2,. 4, and. 7 contribute to determining the corresponding

temperature value, and, of these, only cell . 2 includes the contribution derived from

the boundary condition:

. T3 =
1

3
(33.3 + 0 + 0) +

1

3
0 = 11.1K.

At this point, it is clear that in the Gauss-Seidel algorithm, the information origi-

nating from the boundary condition is propagated within the computational domain

according to the order initially assigned to the cells. The numbering of the cells

thus assumes fundamental importance in determining the convergence of the entire

iterative process. By changing the cell numbering, a slowdown in the convergence

occurs, as can be seen by comparing the temperature values obtained above with

those derived from the alternative numbering shown in Fig. 4.4:

132 4 Linear Systems and Their Solution

Fig. 4.4 Alternative cell

numbering

T
 =
1
0
0
K

1m

1
m

y

x

T
 =
0
K

Fig. 4.5 Example of a case

where the numerical and

physical directions of

information propagation do

not coincide

. T1 =
1

2
(0 + 0) +

1

2

100

1/2
= 100K,

T2 =
1

2
(0 + 0) +

1

2
0 = 0K,

T3 =
1

3
(0 + 0 + 0) +

1

3
0 = 0K.

The preceding discussion highlights the need for algorithms such as Cuthill and

inverse Cuthill to achieve the correct cell numbering, as grid generation software

typically assigns a numbering based on requirements different from those needed

for the efficient execution of iterative methods for matrix inversion. The (numerical)

direction of information propagation resulting from the execution of the Gauss-Seidel

algorithm may not align with the (physical) direction dictated by the boundary con-

ditions. Referring to Fig. 4.5, consider the case where the two boundary conditions

are swapped: convergence will slow due to the numerical direction of information

propagation proceeding from left to right (in accordance with the cell numbering),

while the physical direction propagates from right to left, given the initial condition

of zero temperature across the entire domain and a temperature of .100K on the right

edge of the computational domain. To overcome this issue, when the physical direc-

tion of information propagation is not known a priori, the symmetric Gauss-Seidel

algorithm is used, which involves reversing the numerical direction of information

propagation between one iteration and the next.

4.3 Diagonal Dominance and Scarborough Criterion 133

4.3 Diagonal Dominance and Scarborough Criterion

A diagonally dominant matrix is a square matrix of order . n in which the absolute

value of each diagonal element is greater than or equal to the sum of the absolute

values of all the remaining elements in the same row. If .ai j denotes the generic

element of the matrix . A, the following condition must hold:

. |ai i | �

n∑

j=1, j �=i

|ai j |.

A diagonally dominant matrix is always singular (that is, it has a determinant dif-

ferent from zero and, therefore, is invertible). The Scarborough criterion provides a

sufficient condition for convergence in the inversion of the coefficient matrix using

iterative methods. Specifically, adherence to this condition ensures the existence of

at least one iterative method that results in convergence. However, as a sufficient

condition, convergence could also be achieved even if the criterion is not met. The

Scarborough criterion can be expressed in terms of the coefficients of the generic

discretised equation present in the matrix. . A as

.

∑
|anb|

|aP |

{
� 1 for all equations

< 1 for at least one equation
(4.10)

where .aP is the coefficient linked to the cell with centroid P, while .anb are the

coefficients linked to the cells that share at least one face with the cell with centroid

P, or those cells involved based on the chosen discretisation scheme. A coefficient

matrix that respects this criterion is certainly diagonally dominant. This ensures that

the boundedness criterion is also satisfied. According to the boundedness criterion,

the absolute value of a generic transported quantity . φ in a cell is never greater than

the same quantity in the adjacent cells, in the absence of source terms. To achieve

diagonal dominance, it is therefore necessary to have high values for the coefficients

on the main diagonal and low values for the off-diagonal terms. This goal can be

achieved through:

• constructing a computational grid with favourable geometric characteristics

(orthogonality and skewness),

• ensuring that the source terms, moved to the right-hand side of the equation, are

negative,

• reducing the time integration step size,

• resorting to the under-relaxation technique.

134 4 Linear Systems and Their Solution

4.4 Residue and Correction/Error

As mentioned above, iterative methods for solving systems of equations involve

executing numerous iterations to obtain updated values of the unknown quantity . φ

in each cell. The value .φn , obtained at the . nth iteration, does not necessarily satisfy

Eq. 4.1. At this point, it is possible to define the residual error, or simply the residual,

as

.Rn = b − Aφn. (4.11)

It is useful to remember that both .Rn and .φn are column matrices, the number of

elements of which coincides with the number of cells with which the computational

domain has been discretised. Indicating by .φn+1 the value of .φ obtained at the

.(n + 1)-th iteration and assuming that this is the exact value of .φ (the one that

satisfies Eq. 4.1), it can be written

. Aφn+1 = b.

Now, indicating by .φ′ the difference in the value of . φ between the .n-th iteration and

the .(n + 1)-th iteration, it can be written

.φn+1 = φn + φ′. (4.12)

The term .φ′ is called correction or error and is defined as the difference between the

exact and the approximate value (the one obtained at the .n-th iteration) of . φ. From

Eq. 4.12, it follows that

. A
(
φn + φ′

)
= b.

Keeping Eq. 4.11 in mind, it will be

. Aφ′ = Rn

known as the correction form of Eq. 4.1, from which it differs in that, at convergence,

both terms on the left and on the right-hand side become zero.

Once the residual is defined, its .L1 and .L2 norms can also be defined as

. L1 norm : R1 =

N∑

k=1

|Rk |, L2 norm : R2 =

√√√√
N∑

k=1

(Rk)2.

The .L2 norm is also known as the Euclidean norm and is often calculated as

.R2 =
√
RTR.

4.6 LU Factorisation Method 135

4.5 Stopping Criteria

In the case where an iterative method is used, it is necessary to define a criterion upon

which to stop the iterative process. Many of these criteria are based on the concept

of the residual. One such criterion is the one that stops the iterations if the maximum

value of the residual falls below a certain threshold value, . ǫ.

.
N

max
i=1

∣∣∣∣∣∣
bi −

N∑

j=1

ai jφ
n
j

∣∣∣∣∣∣
� ǫ.

Another criterion requires that the mean squared error be less than a certain value, . ǫ.

.

∑N
i=1

(
bi −

∑N
j=1 ai jφ

n
j

)2

N
� ǫ.

A further criterion involves stopping the calculation if the normalised difference

between two consecutive values falls below a certain threshold.

.
N

max
i=1

∣∣∣∣∣
φn

i − φn−1
i

φn
i

∣∣∣∣∣× 100 � ǫ.

A final criterion involves stopping the calculation once the maximum number of

iterations is reached.

4.6 LU Factorisation Method

Given a matrix .A ∈ R
N×N , and assuming that there exist a lower triangular matrix

. L and an upper triangular matrix .U such that

.A = LU, (4.13)

Equation 4.13 is called the LU factorisation (or decomposition). In particular, it will

be

.U =

⎡
⎢⎢⎢⎣

u11 u12 . . . u1N−1 u1N

0 u22 . . . u2N−1 u2N

...
... . . .

...
...

0 0 . . . 0 aN N

⎤
⎥⎥⎥⎦ and L =

⎡
⎢⎢⎢⎣

1 0 . . . 0 0

l21 1 . . . 0 0
...

... . . .
...

...

lN1 lN2 . . . lN N−1 1

⎤
⎥⎥⎥⎦

136 4 Linear Systems and Their Solution

The elements of the main diagonal of the matrix .L are set equal to 1 to make the

factorisation unique. Solving the matrix equation .Ax = b is equivalent to solving

the two simpler triangular systems

. Ly = b and Ux = y.

Since . L is lower triangular, the first row of the system .Ly = b will have the form

.l11y1 = b1, from which we derive the value of .y1 assuming .l11 �= 0. Substituting the

value found for .y1 into the subsequent .N − 1 equations, we obtain a system whose

unknowns are.y2, . . . , yN , for which we can proceed in the same manner. Proceeding

forward, equation by equation, we calculate all the unknowns using the following

algorithm, called forward substitution. In a completely analogous manner, the system

.Ux = y can be solved: in this case, the first unknown to be calculated will be .xN ,

and then, in reverse, all the remaining unknowns .xi for . i ranging from .N − 1 to 1.

Given a matrix .A ∈ R
n×n , its LU factorisation exists and is unique if and only if

the principal submatrices .Ai of . A of order .i = 1, . . . , N − 1 (i.e., those obtained by

limiting. A to the first. i rows and columns) are non-singular. Some classes of matrices

satisfy the condition just stated, and among these, the following can be mentioned:

• strictly diagonally dominant matrices: For simplicity, we recall here that a matrix

is said to be row diagonally dominant if

. |ai i | �

N∑

j=1, j �=i

|ai j | i = 1, . . . , N .

It is said to be column diagonally dominant if

. |ai i | �

N∑

j=1, j �=i

|a j i | i = 1, . . . , N

f the sign . > can replace the sign . �, there will be strict diagonal dominance (for

rows or columns, respectively).

Real symmetric and positive definite matrices. A matrix is said to be positive

definite if

. ∀x ∈ ℜN with x �= 0, xT Ax > 0;

a matrix is said to be semi positive defined if

. ∀x ∈ ℜN with x �= 0, xT Ax � 0.

If .A ∈ R
N×N is symmetric and positive definite, there exists a special factorisation

called the Cholesky factorisation, expressed by

.A = RT R

4.6 LU Factorisation Method 137

where .R is an upper triangular matrix, obtained using a suitable algorithm, with

positive elements on the main diagonal. The Cholesky factorisation generates the

filling of the band, a phenomenon called fill-in, whereby the factorisation process

tends to fill the .L and .U matrices, modifying the structure of the corresponding

triangle of the initial .A matrix. For example, if the .A matrix is coarse, the .L and

.U matrices may have non-zero elements where in the .A matrix they were null. A

square matrix of size .N is called coarse if it has a number of non-null elements of

the order of . N . Furthermore, the pattern of a coarse matrix is the set of its non-null

elements. To overcome the fill-in of a matrix, reordering techniques can be adopted,

which permute rows and columns of the matrix before performing the factorisation.

4.6.1 Preconditioning

Given a symmetric and positive-definite linear system .Aφ = b, preconditioning the

system means conditioning the matrix of coefficients before applying any iterative

method; conditioning the matrix aims to improve its condition number. The condition

number of a symmetric matrix is defined as:

. K (A) =
λM

λm

where.λM is the maximum eigenvalue and.λm is the minimum eigenvalue of the matrix

. A. To be well-conditioned, a matrix must have a condition number .K (A) ≈ 1. The

larger the condition number of . A, the slower the convergence will be. The precondi-

tioning technique is used to improve this number, and therefore the robustness and

computational efficiency of the iterative methods used to solve the linear system.

In practice, preconditioning consists of defining a matrix .M of the same dimen-

sions as . A, called the preconditioning matrix or preconditioner, with the following

characteristics:

• non-singular, i.e., invertible;

• symmetric, that is, .MT = M;

• positive-definite.

and transform the previous system into the equivalent preconditioned system:

. M−1Aφ = M−1b

which can be solved faster than the initial one, provided that .K
(
M−1A

)
≪ K (A).

An example is the diagonal or Jacobi preconditioner, in which the matrix .M is

constructed from the matrix . A, considering only the elements of the main diagonal:

.M = diag(A).

138 4 Linear Systems and Their Solution

In this case, the preconditioner performs a simple ‘scaling’ of the initial matrix . A. In

the case where . A is also coarse, in addition to being symmetric and positive-definite,

the preconditioning matrix can be constructed through an incomplete Cholesky fac-

torisation of the matrix . A. This is referred to as ILU decomposition (Incomplete

Lower-Upper) of a symmetric matrix. With this strategy, a lower triangular matrix

.RP is constructed. .RP approximates the factor .RT of the Cholesky factorisation.

. M = RPR
T
P .

A widely used technique to construct .RP is known as ICT (Incomplete Cholesky

with Threshold Dropping). To implement it, the following steps are performed:

1. choose a drop tolerance .ǫd > 0;

2. perform the Cholesky factorisation algorithm (appropriately modified to generate

a lower triangular matrix) to construct the elements of .RP . Off-diagonal elements

that are less than .c jǫd are ignored (.c j is the norm of the . j-th column vector of the

lower triangle of . A).

The nofill technique, on the other hand, ignores all elements of .RP where the cor-

responding positions in . A contain null elements. In fact, it is a factorisation without

fill-in. This is referred to as ILU(0) decomposition. A simplified version of the ILU

decomposition is known as diagonal ILU (DILU), in which only the elements of the

main diagonal are modified.

4.6.2 The Gradient and Conjugate Gradient Methods

Given the square linear system .Ax = b of dimension . N , it is possible to define the

function . � : R
N → R

. �(x) =
1

2
xTAxxTb.

If . A is symmetric and positive definite, .� is a convex function, i.e., .∀ x, y ∈ R
N . If

.� is convex, then .∀α ∈ [0, 1], it holds

. �(αx + (1 − α) y) � α�(x) + (1 − α)�(y)

and. � admits a unique stationary point,. x∗, which is also a point of local and absolute

minimum. From this, it follows that

.x∗ = argmin
x∈ℜN

�(x) (4.14)

is the only solution of the equation

.∇�(x) = Ax − b = 0.

4.6 LU Factorisation Method 139

Solving the minimum problem (4.14) is equivalent to solving the linear least squares

system .Ax = b of dimension . N , in which .A is symmetric and positive definite.

Starting from a generic point.x(0) ∈ R
N , the gradient and conjugate gradient methods

construct a sequence of vectors .x(k) converging to . x∗, exploiting the information

provided by the gradient vector of . �. In fact, for a generic .x ∈ R
N different from

. x∗, .∇�(x) is a non-zero vector in .RN that identifies the direction along which the

maximum growth of .� occurs. Consequently, .−∇�(x) identifies the direction of

maximum decrease of .� starting from . x. Recall that the residual vector at the point

. x is defined as .r = b − Ax. It can be written

. r = −∇�(x)

From this, it is noted that the residual identifies a possible direction in which to

move in order to approach the minimum point . x∗. More generally, if the following

conditions are met

.

{
dT ∇�(x) < 0 i f ∇�(x) �= 0,

d = 0 i f ∇�(x) = 0,

the vector . d represents a direction of descent for .� at the point . x.

The descent methods are thus defined:

given a vector .x(0) ∈ ℜN ,

• a direction of descent .d(k) ∈ ℜN is determined;

• a step .αk ∈ ℜ is determined;

• the update rule is set as .x(k+1) = x(k) + αkd
(k).

for .k = 0, 1, . . . until convergence.

The gradient and conjugate gradient methods are both descent methods, differing

in the choice of descent directions. The determination of the steps .αk is common to

both methods and is performed using the following formula:

.αk =

(
d(k)
)T

r(k)

(
d(k)
)T

Ad(k)
. (4.15)

The gradient method is characterised by the choice

. d(k) = r(k) = −∇�(x(k)), k = 0, 1, . . .

That is, the direction of descent at each step is opposite to the direction of the

gradient of the function .� (hence the name of the method). The conjugate gradient

method constructs a system of descent directions .d(k)N−1

k=0 in .R
N that are all linearly

independent and therefore constitute a basis for.RN . Moreover, the descent directions

are such that the values .αk
N−1
k=0 , calculated with the formula (4.15), are precisely the

coefficients of the decomposition of .
(
x∗ − x(0)

)
with respect to the basis .d(k)N−1

k=0 .

140 4 Linear Systems and Their Solution

This implies that the term .x(N) obtained at the N-th iteration coincides with the exact

solution . x∗.

4.7 Multigrid Methods

A multigrid algorithm improves the performance of an iterative method for solving

systems of equations by using a hierarchy of grids generated from an initial grid.

4.7.1 The Smoothing Property of Iterative Methods

Many iterative schemes used to solve a linear system obtained by appropriately dis-

cretising a generic PDE have the property of eliminating, in a few iterations, the

high-frequency errors, while leaving the low-frequency errors almost unchanged.

The system .Aφ = 0, obtained by discretising the one-dimensional problem, is

considered.

.

{
φ′′ = 0 with x ∈ (0, 1)

φ(0) = φ(1) = 0.

Defined the error as the difference between the exact and approximate values. For

this problem, the exact solution is .φ = 0, therefore, given an approximate solution

. v, the error is trivially .−v. As the initial solution, the vector .vk can be considered,

defined as

. vk
j = sin

(
jkπ

n

)
.

In this context, the index . j represents the . j-th component of the vector . v, while

. k is called the wave number or frequency of the signal. A signal is defined as low

frequency, or smooth, if .1 � k < n
2
, where . n is the number of discretisation inter-

vals. A signal is defined as high frequency if . n
2

� k < n. Taking, for example, four

initial vectors with .k = 1, 6, 16, 32, the trend of the norm of the error is shown in

Fig. 4.6. It is observed that the error decreases with each iteration regardless of the

initial data, but the rate at which it decreases is very different: it is higher in the

case of .k = 32, or for high-frequency signals. This simple example shows that the

high-frequency components of the error are significantly reduced in a few itera-

tions, while the low-frequency components require a greater number of iterations.

In the case where .v = v1 + v6 + v16 + v32, the method manages to eliminate the

low-frequency component of the error, and therefore, in Fig. 4.7, it is observed that,

in the first iterations, the error decreases considerably and then stabilises. This prop-

erty of eliminating the high frequencies of the error (smoothing) is characteristic of

many iterative algorithms (Jacobi, Gauss-Seidel, red-block Gauss-Seidel, etc.) and

4.7 Multigrid Methods 141

Fig. 4.6 Error as a function

of the number of iterations

for the system .Aφ = 0,

using 4 vectors initial at

different frequency

Fig. 4.7 Error trend for the

system .Aφ = 0, using the

initial vector . v = v1 + v6 +

v16 + v32

represents the starting point for multigrid methods. From the definition of high/low-

frequency signals, it is understood that as the number of discretisation intervals . n

varies, the same signal, identified by the wave number . k, can be considered high or

low frequency: specifically, a low-frequency signal for a high number of intervals

becomes high frequency for a low number of intervals.

4.7.2 Geometric Multigrid

To better understand this method, also known as FAS (Full-Approximation Storage)

multigrid, initially consider the case where only two grids are used: a coarse one

and a fine one. The example referred to is that of the Poisson equation solved on a

two-dimensional rectangular domain with a structured grid and Dirichlet boundary

conditions on all boundaries. It is important to keep in mind that the accuracy of the

final solution must still be that of the fine grid. This method is implemented in an

algorithm consisting of various steps, a brief description of which is given below.

4.7.2.1 Generation of Grids (Agglomeration)

Starting from the fine grid with which the computational domain has been discretised,

the first step consists of generating the coarse grid. As shown in Fig. 4.8, each node

142 4 Linear Systems and Their Solution

of the coarse grid will share its position with a node of the fine grid. Indicating by

.(I, J) the identifying indices of the coarse grid and by .(i, j) the indices of the fine

grid, we can write with reference to Fig. 4.8:

. (i, j) = (2I − 1, 2J − 1).

Being .NF and .NC the total number of points for the fine grid and the coarse grid,

respectively, along the direction .I/ i , and .MF and .MC the total number of points for

the fine grid and the coarse grid, respectively, along the direction .J/j , it will be

. NF = 2NC − 1, MF = 2MC − 1.

As an example, from a fine grid of dimensions .21 × 21 we would obtain a coarse

grid of dimensions .11 × 11.

4.7.2.2 Initialisation

In this phase, the initial value .φ
F(0)
i, j of the dependent variable at each point of the

fine grid is set.

4.7.2.3 Smoothing on the Fine Grid

In this phase, the system of equations .AFφF = bF , resulting from the application

of the Poisson equation to each cell of the fine grid, is solved. Keeping in mind

what was discussed in Sect. 4.7.1 and with the aim of eliminating only the high-

frequency components of the error, only a reduced number of iterations is performed

to solve this system (smoothing). The iterative method chosen—also called the solver

or smoother—to solve this system must be selected from those computationally

less expensive, as the reduction of errors in the multigrid method is mainly due

Fig. 4.8 Generation of the

coarse grid (continuous line

circles) from the fine grid.

Grey circle: point of the fine

grid positioned on a line of

coarse grid. Dashed circle:

point of the fine grid not

positioned on a line of coarse

grid

I/i

J/j

4.7 Multigrid Methods 143

to the use of grids with different levels of cell density. The Gauss-Seidel solver

is normally preferred over more complex solvers, such as those based on gradient

analysis. The solution obtained in this phase is affected by an error characterised

by long wavelengths for the fine grid, as the shorter wavelength components of the

error have been eliminated by the smoothing process. The subsequent steps of the

multigrid method aim to transfer this error to the coarse grid.

4.7.2.4 Calculation of the Residual on the Fine Grid

Here, the residual on the fine grid is calculated as

. RF = bF − AFφF

and then its L2 norm as

. R2F =

√
RT

FRF .

4.7.2.5 Transfer of the Fine Grid Residuals to the Coarse Grid

(Restriction)

This phase, known as restriction, ensures that the residuals of the nodes of the fine

grid that have a counterpart in the coarse grid are copied onto the same nodes of the

coarse grid. These residuals will be indicated with the symbol .RC←F . In the event

that there is no correspondence between the nodes of the fine grid and the coarse

grid, it will be necessary to use an interpolation method. Note that the component

4.7.2.6 Smoothing on the Coarse Grid

Considering the equation in correction form for the coarse grid

. ACφ′
C = RC←F

a reduced number of iterations is performed to solve this system with the aim of

eliminating only the high-frequency components (for the coarse grid) of the correc-

tion .φ′
C . Here too, as done for smoothing on the fine grid, the method to solve this

system is chosen from those computationally less expensive.

144 4 Linear Systems and Their Solution

4.7.2.7 Transfer of the Correction for the Coarse Grid to the Fine Grid

(Prolongation)

The correction .φ′
C for the coarse grid, obtained at the end of the smoothing phase on

the coarse grid, is transferred to the fine grid with a process known as prolongation.

The prolongation phase involves the use of interpolation, as there are points on the

fine grid that are not present on the coarse grid. In this regard, and with reference to

Fig. 4.8, three different cases can occur.

1. The point of the fine grid coincides with the point of the coarse grid: in this case,

interpolation is not necessary;

2. the point of the fine grid is positioned on a grid line of the coarse grid: in this case,

interpolation between the two points of the coarse grid adjacent to the considered

fine grid point can be performed;

3. the point of the fine grid is not positioned on a grid line of the coarse grid: in this

case, interpolation must be performed considering the four points of the coarse

grid adjacent to the considered fine grid point.

The symbol .φ′F←C will denote the correction on the fine grid obtained from the

correction on the coarse grid.

4.7.2.8 Updating the Solution on the Fine Grid

In this phase, the initial solution previously obtained for the fine grid is updated by

considering the correction obtained from the coarse grid:

. φF = φF + φ′F←C .

4.7.2.9 Checking the Level of Convergence

The L2 norm of the residual, calculated after the smoothing phase on the fine grid,

is compared with the threshold value .ǫtol , which is defined to determine whether

the solution obtained is acceptable. This value of the residual, rather than the one

corresponding to the last update of the solution for the fine grid, is used to avoid

calculating the residual twice in the same multigrid cycle. If the convergence criterion

(.R2F < ǫtol) is not met, the process is repeated, starting from the smoothing phase

on the fine grid.

4.7.3 V-Cycle

In general, the multigrid algorithm involves the use of more than two grids. Specifi-

cally, we refer to a hierarchy of grids to denote the set of grids employed, each with a

4.7 Multigrid Methods 145

different level of refinement. To better understand the use of the multigrid algorithm

with multiple grids, we will now consider the algorithm known as V-cycle multi-

grid. Figure 4.9 shows a V-cycle multigrid with three grid levels. The shaded boxes

represent the smoothing operation, the box with a thick continuous line represents

the correction operation, and the dashed box represents the operation of updating

the correction and the final solution. The arrows pointing down represent the restric-

tion operation, while the arrows pointing up represent the prolongation operation.

Through the restriction operation, the residual obtained from the partial solution of

the original system is transferred to the intermediate grid. At this point, the equa-

tion in correction form, .A2φ
′
2 = R2←1, for the intermediate grid is partially solved,

and then the corresponding residual .R2 = R2←1 − A2φ
′
2 is calculated. The residual

corresponding to the intermediate grid is then transferred to the coarse grid. In the

ideal case, the coarse grid allows for a direct solution from the corresponding system

resulting from the application of the equation in correction form, .A3φ
′
3 = R3←2.

In practice, a direct solution of this system is not possible, so we proceed with a

partial solution using an iterative method, typically the one used for the smoothing

phase performed in the previous steps. Subsequently, the coarse grid correction is

transferred to the intermediate grid. The intermediate grid correction is calculated as

.φ′
2 = φ′

2 + φ′
2←3. The transfer to the fine grid and the calculation of the correspond-

ing correction is done via .φ′
1 = φ′

1 + φ′
1←1. The process ends with the updating of

the solution on the fine grid. The total number of grids used is determined by the

computational costs associated with interpolation operations and data storage for

each grid level. In addition to the V-cycle algorithm, the W-cycle and full multigrid

algorithms are also widely used. These are based on the principles outlined here and

will not be discussed further.

4.7.4 Algebraic Multigrid

As seen earlier, one of the factors that most influences the efficiency of the itera-

tive process for solving systems of equations is a coefficient matrix characterised

by elements whose ratio between the maximum and minimum value is very high.

In this case, we speak of anisotropy of the coefficients, which, in some cases, can

lead to poorly conditioned matrices. Keeping in mind what was discussed in Chap. 3

and referring to Eq. 4.7, the dependence of the value of the coefficients on the geo-

metric characteristics of the cells is evident. In the case of rectangular cells with

high ratios between the lengths of the two sides, an anisotropic matrix of coeffi-

cients is obtained. The solution would advance at different speeds depending on the

considered direction, slowing down the entire resolution process. The presence of

physical phenomena with direction-dependent characteristics also contributes to the

anisotropy of the coefficient matrix, even in the presence of a regular computational

grid.

Stating the dependence of the coefficient matrix on the geometry of the grid, it is

clear that, for geometric multigrid, the grid geometry determines the agglomeration

146 4 Linear Systems and Their Solution

Fig. 4.9 V-cycle multigrid

with three grid levels

process. Conversely, in algebraic multigrid, the values of the elements of the fine grid

coefficient matrix are used to construct a coarse grid whose coefficient matrix has

better isotropy characteristics. In algebraic multigrid, both the influence of geometry

and physical phenomena on the isotropy of the coefficient matrix are taken into

account, leading to a general improvement in the resolution process. In algebraic

multigrid, the basic strategy of the geometric multigrid method is maintained, as

grids with different levels of refinement continue to be considered. Specifically, the

transition from fine grids to coarse grids involves the phases of restriction, setting

up/updating the system of equations for the coarser grid, and smoothing on the

coarser grid. The transition from coarse grids to fine grids involves the phases of

prolongation, correction of the solution on the finer grid, and smoothing on the finer

grid.

4.7.4.1 Generation of Grids (Agglomeration/Coarsening)

Various approaches are possible for the creation of grids at different levels of refine-

ment that will be used in the multigrid procedure. For example, one can start from a

4.7 Multigrid Methods 147

coarse grid and then gradually refine it. This approach implies an excessive depen-

dence of the finer grid on the starting coarse grid. In general, it is therefore preferred

to start from the finer grid in order to obtain the coarser grid through the union

(agglomeration) of cells of the fine grid. The agglomeration process can be based on

both geometric criteria and criteria related to the values assumed by the coefficients

of the algebraic equations in the various cells of the fine grid. Note: what is referred

to in OpenFOAM® when discussing Geometric-Algebraic Multi-Grid (GAMG) is

a solver for linear systems of the algebraic multi-grid type, with an agglomeration

process that, depending on the settings, can be based on both geometric criteria and

the values of the elements of the coefficients matrix.

4.7.4.2 Initialisation and Smoothing on the Fine Grid

Once an initial value for the unknown in each cell of the computational domain is set,

and using the chosen solver as an iterative method for the solution of linear systems,

a limited number of iterations is performed to obtain a first approximate solution on

the fine grid. Based on this approximate solution, the vector consisting of the values

of the residual in each of the cells of the computational domain is calculated.

4.7.4.3 Calculation of Residuals on the Fine Grid

The general linear conservation equation for the cell centred at C can be written in

the form

.aCφC +
∑

F=N B(C)

aFφF = bC (4.16)

where .N B(C) is the number of faces that bounds the cell. Applying Eq. 4.16 to all

the cells of the computational domain, the system .Aφ = b is obtained. For each cell,

it can be written

. aiφi +
∑

j=N B(i)

ai jφ j = bi

and, using the index . k to refer to the fine grid,

. a
(k)

i φ
(k)

i +
∑

j=N B(i)

a
(k)

i j φ
(k)

j = b
(k)

i .

By definition, the residual on the generic cell . i of the fine grid will be

.r
(k)

i = b
(k)

i −

⎛
⎝a

(k)

i φ
(k)

i +
∑

j=N B(i)

a
(k)

i j φ
(k)

j

⎞
⎠ .

148 4 Linear Systems and Their Solution

Recalling the definition described in Sect. 4.4, the same residual can be written in

terms of correction . φ′:

. r̃
(k)

i = b
(k)

i −

⎡
⎣a

(k)

i

(
φ

(k)

i + φ
′(k)

i

)
+

∑

j=N B(i)

a
(k)

i j

(
φ

(k)

j + φ
′(k)

j

)
⎤
⎦

that is

.r̃
(k)

i = r
(k)

i −

⎛
⎝a

(k)

i φ
′(k)

i +
∑

j=N B(i)

a
(k)

i j φ
′(k)

j

⎞
⎠ . (4.17)

4.7.4.4 Transfer of Residuals and Coefficients from the Fine Grid to the

Coarse Grid (Restriction)

Using the index .k + 1 to refer to the coarse grid, the residuals on the coarse grid can

be calculated in terms of the residuals on the fine grid as

. rk+1 = Ik+1
k rk

where .Ik+1
k is the restriction operator in the transition from the fine grid to the coarse

grid resulting from the process of agglomeration. In algebraic multigrid, this operator

(the interpolation matrix) is defined in order to obtain

. r k+1
I =

∑

i∈I

r k
i

where the subscript . i refers to the cells of the grid at level . k (the fine grid) which, in

the agglomeration process, have been grouped to form the cell . I of the .k + 1 level

grid (the coarse grid).

The coefficients of the coarse grid are calculated from those of the fine grid using

the following relationships:

. ak+1
I =

∑

i∈I

ak
i +

∑

i∈I

∑

j∈I

ak
i j , ak+1

I J =
∑

i∈I

∑

j /∈I
j∈N B(I)

ak
i j .

4.7.4.5 Smoothing on the Coarse Grid

Imposing that for each cell . I of the coarse grid the residual value is zero is equivalent

to requiring that

.

∑

i∈I

r̃
(k)

i = 0

4.7 Multigrid Methods 149

which, as referred to in Eq. 4.17, becomes

.0 =
∑

i∈I

r
(k)

i −

⎛
⎝∑

i∈I

a
(k)

i φ
′(k)

i +
∑

i∈I

∑

j=N B(i)

a
(k)

i j φ
′(k)

j

⎞
⎠ (4.18)

which is the correction form of the equation for the coarse grid, written according to

the numbering of the fine grid. Using the numbering of the coarse grid, Eq. 4.18 can

be rewritten as

.ak+1
I φ

′(k+1)
I +

∑

J=N B(I)

a
(k+1)
I J φ

′(k+1)
J = r k+1

I . (4.19)

A reduced number of iterations of the chosen linear system solution algorithm is exe-

cuted on the system resulting from the application of the correction form of Eq. 4.19

to each cell of the coarse grid. This results in the value .φ′(k+1) of the correction

on the coarse grid.

4.7.4.6 Transfer of the Correction for the Coarse Grid to the Fine Grid

(Prolongation)

This phase can be implemented according to different approaches. One possibility

is to set the correction value for all the cells . i of the fine grid, which together form

the cell . I , equal to the value obtained for the cell . I of the coarse grid.

4.7.4.7 Smoothing of the Correction for the Fine Grid

In the case where the fine grid used is not the starting fine grid, a reduced number of

iterations of the chosen linear system solution algorithm is executed on the system

resulting from the application of the correction form of Eq. 4.19 to each cell of the

fine grid. This results in an updated value .φ′(k+1) of the correction on the fine grid.

4.7.4.8 Updating the Solution on the Fine Grid

In this phase, the solution previously obtained on the fine grid is updated by consid-

ering the correction from the coarse grid.

4.7.4.9 Checking the Level of Convergence

If the convergence criterion (.R2F < ǫtol) is not reached, the process is repeated,

starting from the smoothing phase on the fine grid.

150 4 Linear Systems and Their Solution

4.7.5 Application Example

As an application example, a stationary diffusion problem is considered in a ther-

mally insulated metal bar of length .L = 1m, with a constant cross-sectional area

of .A = 0.1m2, with its ends kept at constant temperatures of .100 ◦C and .500 ◦C,

respectively. Inside the bar, heat is produced at a constant volumetric power density

of .q = 2000 kW
m3 , and the material of the bar has a constant thermal conductivity of

.k = 5 W
m K

. Assuming the coordinate . x is associated with the length of the bar, the

equation that describes this phenomenon is

.

d

dx

(
k

dT

dx

)
+ q = 0. (4.20)

The equation that generally describes the stationary one-dimensional diffusion

phenomenon of a quantity . φ is

.

d

dx

(
Ŵ

dφ

dx

)
+ S = 0 (4.21)

where . Ŵ is the diffusion coefficient and . S is the source term. Referring to Fig. 4.10,

by integrating and discretising, it becomes

.

∫

�V

d

dx

(
Ŵ

dφ

dx

)
dV +

∫

�V

qdV =

(
ŴA

dφ

dx

)

e

−

(
ŴA

dφ

dx

)

w

+ S�V = 0

(4.22)

where . S is the average value of the source term within the control volume .�V .

Assuming a linear approximation to calculate the value of . Ŵ at the interfaces . e and

. w, it becomes

. Ŵw =
ŴW + ŴP

2
and Ŵe =

ŴP + ŴE

2
.

The diffusive flows are expressed as

.

(
ŴA

φ

dx

)

e

= Ŵe Ae

(
φE − φP

dxP E

)
and

(
ŴA

φ

dx

)

w

= Ŵw Aw

(
φP − φW

dxW P

)
.

To account for cases where the source term . S is a function of the dependent variable,

it is expressed in linear form:

. S�V = Su + SPφP .

It is now possible to rewrite Eq. 4.22 as

.Ŵe Ae

(
φE − φP

dxP E

)
− Ŵw Aw

(
φP − φW

dxW P

)
+ (Su + SPφP)

4.7 Multigrid Methods 151

which, rearranged, becomes

.

(
ŴE

dxP E

Ae +
ŴW

dxW P

Aw − SP

)
φP =

(
Ŵw

dxW P

Aw

)
φW +

(
Ŵe

dxW P

Aw

)
φE + Su

or, in compact form,

.aPφP = aW φW + aEφE + Su (4.23)

having set

. aW =

(
Ŵw

dxW P

Aw

)
, aE =

(
Ŵe

dxW P

Aw

)
, aP = aW + aE − SP .

The analysis of the one-dimensional computational domain, constituted by the thick-

ness of the bar, is now performed. Such a domain can be divided into intervals, each

constituting the control volume in which the governing Eq. 4.20 is integrated. The

integration of Eq. 4.20 over the control volume highlighted in Fig. 4.10 leads to the

formulation.

.

∫

�V

d

dx

(
k

dT

dx

)
dV +

∫

�V

qdV =

[(
k A

dT

dx

)

e

−

(
k A

dT

dx

)

w

]
+ q�V = 0

(4.24)

that is

.

[
ke A

(
TE − TP

δx

)
− kw A

(
TP − TW

δx

)]
+ q Aδx = 0. (4.25)

Setting .ke = kw = k and rearranging, we get

.

(
k A

δx
+

k A

δx

)
TP =

(
k A

δx

)
TW +

(
k A

δx

)
TE + q Aδx .

Using the compact notation (4.23), it is

. aW =
k

δx
A, aE =

k

δx
A, aP = aW + aE − SP , SP = 0, Su = q Aδx .

The approach for boundary nodes 1 and 5 is slightly different. In the case of node 1,

point P coincides with point 1, and the temperature on face. w—which coincides with

point A—is known as it is prescribed by the boundary condition. The integration of

Fig. 4.10 Discretisation of

the computational domain

152 4 Linear Systems and Their Solution

the governing equation still leads to Eq. 4.24. Assuming a linear temperature trend

between point A and point 1, for the control volume centred at point 1, Eq. 4.25 can

be expressed as

.

[
ke A

(
TE − TP

δx

)
− kw A

(
TP − TA

δx/2

)]
+ q Aδx = 0.

Using the compact notation of Eq. 4.23, it is

. aW = 0, aE =
k

δx
A, aP = aW + aE − SP , SP = −

2k

δx
A, Su = q Aδx +

2k

δx
A TA.

In the case of node 5, point P coincides with point 5, and the temperature on face . e—

which coincides with point B—is known as it is prescribed by the boundary condition.

The integration of the governing equation again leads to Eq. 4.24. Assuming a linear

variation of the temperature between point 5 and point B, for the control volume

centred at point 5, Eq. 4.25 can

.

[
ke A

(
TB − TP

δx/2

)
− kw A

(
TP − TW

δx

)]
+ q Aδx = 0.

Using the compact notation of Eq. 4.23, one obtains

. aW =
k

δx
A, aE = 0, aP = aW + aE − SP , SP = −

2k

δx
A, Su = q Aδx +

2k

δx
A TB .

Table 4.1 summarises the expressions derived so far for the coefficients .aW , .aE , . Su ,

.SP , and .aP as functions of the considered node.

Given these premises and assuming the entire length of the bar is discretised into

20 intervals, we obtain .δx = 0.05m, while the values of the coefficients .aW , .aE , . Su ,

.SP , and .aP are those shown in Table 4.2.

Table 4.1 Summary table of coefficients

Node .aW .aE .Su .SP . aP

First node 0 .
k A

δx
.q Aδx +

2k

δx
A TA .−

2k

δx
A . aW + aE − SP

Non-border nodes .
k A

δx
.
k A

δx
.q Aδx .0 . aW + aE − SP

Last node .
k A

δx
.0 .q Aδx +

2k

δx
A TB .−

2k

δx
A .aW + aE − SP

4.7 Multigrid Methods 153

Table 4.2 Numerical value of the coefficients .aW , .aE , .Su , .SP and . aP

Node .aW .aE .Su .SP . aP

1 0 1 210 .−2 3

2, …,19 1 1 10 .0 2

20 1 .0 1010 .−2 3

By constructing the matrix equation resulting from the application of the

conservation equation, integrated over each of the 20 control volumes, one obtains

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0

−1 2 −1 0 0

0 −1 2 −1 0 . . . 0
...

... . . .
...

... . . . 0

. −1 2 −1

0 0 . . . 0 . . . −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

210

10

10
...

10

1010

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.26)

4.7.5.1 Iterations on the Fine Grid

Once the matrix Eq. 4.26 is determined, representing the system of algebraic equa-

tions for the considered system, the multigrid algorithm calls for a limited number

of iterations using any iterative method for solving linear systems. In the example

considered here, after setting the initial guess solution as one assuming a constant

temperature of .150 ◦C throughout the entire computational domain, five iterations

of the Gauss-Seidel algorithm are performed. The obtained solution vector is

. yh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

116.755

141.994

160.427
...

394.392

468.130

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The residual vector is defined as.r = b − Ay, where. b is the column matrix of known

terms and . A is the matrix of coefficients. Referring to the case of the fine grid, this

becomes .rh = bh − Ahyh , which numerically results in

154 4 Linear Systems and Their Solution

. rh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r h
1

r h
2

r h
3
...

r h
19

r h
20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

210

10

10
...

10

1010

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 0

−1 2 −1 0 0

0 −1 2 −1 0 . . . 0
...

... . . .
...

... . . . 0

. −1 2 −1

0 0 . . . 0 . . . −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.728

3.193

4.658
...

7.461

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.2 Transfer of Residuals and Coefficients from the Fine Grid to the

Coarse Grid (Restriction)

The multigrid algorithm involves the use of multiple grids, each with a different level

of refinement. The simplest way to construct grids with a lower degree of refinement,

starting from the initial grid, is to pair the cells of the initial grid, as shown in Fig. 4.11.

In the present example, three grids will be used:

• the finest initial grid, shown at the top in Fig. 4.11, has intervals of width.δx = 0.05.

this grid will be associated with the superscript . h;

• the intermediate grid, shown in the centre of Fig. 4.11, has intervals of width

.δx = 0.1. this grid will be associated with the superscript .2h;

• the coarsest grid, shown at the bottom of Fig. 4.11, has intervals of width.δx = 0.2.

this grid will be associated with the superscript .4h.

Note that the .2h grid has half the number of intervals compared to the . h grid, and

the .4h grid has half the number of intervals compared to the .2h grid. Once the

grids are defined, a residual vector must be associated with the two intermediate and

coarse grids, starting from the residual vector initially calculated for the fine grid

(restriction). Since each centre of an interval on the intermediate grid is equidistant

from the two centres of the fine grid intervals from which it originated, the residual

associated with each interval on the intermediate grid will be the average of the

residuals associated with the pair of fine grid intervals from which the intermediate

grid interval originated. The same procedure is applied to calculate the residuals for

Fig. 4.11 Grids used in

the example of the multigrid

algorithm application

4.7 Multigrid Methods 155

the coarse grid, starting from those of the intermediate grid. The residuals associated

with the intermediate grid will therefore be

. r2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r2h
1

r2h
2

r2h
3
...

r2h
9

r2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.460

5.317

7.506
...

28.173

3.730

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Once the vector of residuals on the intermediate grid is determined, it is necessary

to determine the coefficient matrix .A2h for the matrix equation .A2he2h = r2h , which

the residual vector.r2h satisfies. In this example, this matrix is not calculated by inter-

polating the corresponding matrix from the fine grid but by reapplying the procedure

shown in the Table 4.1 to the intermediate grid. The result is

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.5 −0.5 0 0

−0.5 1 −0.5 0 0

0 −1 2 −1 0 . . . 0
...

... . . .
...

... . . . 0

. −0.5 1 −0.5

0 0 . . . 0 . . . −0.5 1.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.460

5.317

7.506
...

28.173

3.730

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.27)

Even for the error vector on the intermediate grid, .e2h , the same system as in Eq. 4.27

is solved using the Gauss-Seidel procedure. This time, more iterations are performed

compared to the case of the fine grid, as there are fewer elements, and the compu-

tational cost of each iteration is reduced. After ten iterations, the following solution

vector is obtained.

. e2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

19.156

58.310

96.049
...

158.591

55.351

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Given that the system in Eq. 4.27 was solved using an iterative method, a residual

can be defined as

.̂r2h = r2h
initial − A2he2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.881

4.609

5.929
...

0.9192

0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

156 4 Linear Systems and Their Solution

whose numerical values correspond to the values of .e2h after ten iterations. As done

previously for the intermediate grid, these residuals can be interpolated and trans-

ferred onto the coarse grid to obtain the residual vector .r4h . Similarly, as done for

the intermediate grid, it is possible to determine the matrix .A4h . The matrix .A4h is

then used to solve the system .A4he4h = r4h using the same iterative method. After

ten iterations, the vector .e4h will be

. e4h =

⎡
⎢⎢⎢⎢⎣

e4h
1

e4h
2

e4h
3

e4h
4

e4h
5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

23.408

55.831

63.731

47.205

16.348

⎤
⎥⎥⎥⎥⎦

.

4.7.5.3 Transfer of the Correction for the Coarse Grid to the

Intermediate Grid (Prolongation)

The errors calculated for the coarser grid in the previous phase must now be trans-

ferred to the finer grid. For this purpose, any interpolation method can be used.

Therefore, using linear interpolation to transfer the errors from the coarser .4h grid

to the intermediate .2h grid, it is

. e′2h
1 = 0.75e′4h

1 ,

e′2h
2 = 0.75e′4h

1 + 0.25e′4h
2 ,

e′2h
2 = 0.25e′4h

1 + 0.75e′4h
2 .

For the first three points of the intermediate grid, the single quote mark has been used

to distinguish these errors from those obtained for the same grid during the restriction

phase. The error at the edges has also been considered null where the boundary

condition is imposed. Therefore, considering the value of the sought quantity at

those points as known, it is

. e′2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e′2h
1

e′2h
2

e′2h
3
...

e′2h
9

e′2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

17.556

31.514

47.726
...

24.062

12.261

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It is now possible to compute the correct value of the error on the intermediate grid,

considering that

.e2h
corr = e2h + e′2h

4.7 Multigrid Methods 157

and therefore

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

36.713

89.725

143.775
...

182.654

67.612

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.4 Smoothing of the Correction for the Intermediate Grid

It is useful to recall here that the Gauss-Seidel algorithm is the chosen method for

solving systems of linear equations. Since the intermediate grid is not the initial fine

grid, only two iterations of the Gauss-Seidel algorithm are applied to the system

formed by the equation in correction form, .A2he2h = r2h . This results in an updated

value for the correction on the intermediate grid:

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

32.639

95.749

152.494
...

188.283

65.248

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.5 Transfer of the Correction for the Intermediate Grid to the Fine

Grid (Prolongation)

Similarly to the transfer of errors from the coarse grid to the intermediate grid, the

errors just calculated for the intermediate grid are transferred to the fine grid, resulting

in

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eh
1

eh
2

eh
3
...

e19
h

eh
20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

24.479

48.416

79.971
...

96.007

48.936

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

158 4 Linear Systems and Their Solution

4.7.5.6 Updating the Solution on the Fine Grid

In this phase, the initial solution for the fine grid is updated by considering the

correction obtained from the coarse grid:

. ycorr = y + eh

which in this case becomes

. yh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

116.755

141.994

160.427
...

394.392

468.130

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

24.479

48.416

79.971
...

96.007

48.936

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

141.235

190.411

240.399
...

490.399

517.067

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.7 Checking the Level of Convergence and Possible Repetition

of the Cycle

The phases of residual (restriction) and error (prolongation) transfer involve the

application of interpolation at various levels, which can introduce numerical errors.

In most practical cases, these errors prevent the solution obtained after a single

multigrid cycle from being characterised by a residual value sufficient to consider

the solution acceptable. For this reason, the entire multigrid cycle is repeated, using

the final solution of the previous cycle as the initial solution, until the required level

of convergence is reached.

Chapter 5

Pressure-Velocity Coupling

What has been illustrated so far about the finite volume method (see Chap. 3) assumed

the velocity field as known. Some of the techniques for determining this field will

be illustrated in this chapter. In this regard, it is useful to highlight that the link—the

coupling—existing between pressure and velocity, together with the non-linearities

resulting from the presence of advective terms, represents one of the major difficulties

in solving the conservation equations of mass and momentum. As seen previously,

the total number of equations to be solved depends both on the number of cells in

the computational domain and on the conservation equations considered: for exam-

ple, in the case of two-dimensional laminar compressible flow, it will be necessary

to consider the conservation equation of mass, the two components of momentum

conservation, energy conservation, and the state equation—five equations for each

cell.

A first categorisation of the various approaches with which the finite volume

method can be used is based on the way all these equations are grouped into linear

systems to be solved. In the case where you want to solve a single system contain-

ing all the equations, we speak of the coupled or, more accurately, simultaneous

approach. When solving separately and sequentially the systems resulting from the

application of the various conservation equations, the approach is called segregated.

In the segregated approach, it is said that each quantity “owns its own equation”,

meaning that each single quantity is associated with the corresponding matrix con-

servation equation. Considering that, even in the segregated case, the equations are

solved depending on each other, the term simultaneous may be clearer than coupled.

Among the main advantages of the segregated approach is the reduced need for com-

puting resources in terms of memory occupied for the solution of linear systems that

are characterised by smaller dimensions given the smaller number of unknowns; the

greater difficulty associated with the segregated approach is manifested in the need to

implement a specific coupling algorithm between pressure and velocity. Correspond-

ingly, the main advantage of the simultaneous approach is that the coupling between

pressure and velocity is verified at the very moment in which all the equations are

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_5

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5
https://doi.org/10.1007/978-3-031-88957-8_5

160 5 Pressure-Velocity Coupling

solved in a single system: it is said in this case that no quantity “owns” its specific

equation.

In the case where the segregated approach is chosen to solve a flow in which the

variations in density and temperature permit the use of the state equation to calculate

pressure, each quantity has its own differential equation: density is obtained from the

equation of conservation of mass, velocity from the conservation of momentum, and

temperature from the energy equation. This approach is referred to as the compress-

ible formulation or, in some cases, the density-based formulation. High-speed gas

flows necessitate the compressible formulation, where the simultaneous approach

is preferred over the segregated one, as the latter is less efficient in cases involving

strong density variations, such as those caused by shock waves.

When pressure variations are negligible, density may vary solely due to temper-

ature changes. Although the flow remains strictly compressible, the state equation

cannot be used to derive pressure as a function of density and temperature. Small

errors in the density calculation through the equation of conservation of mass would

result in significant errors in pressure computation via the state equation, potentially

leading to unacceptable inaccuracies in the velocity field or, in extreme cases, the

failure of the entire iterative process. Consequently, for flows with negligible pressure

variations, an equation of state is employed in which density is a function of temper-

ature alone, which is determined using the equation of conservation of energy. In this

case, the pressure evolution equation is no longer required, and a pressure field must

be computed to determine a corresponding velocity field that satisfies the conserva-

tion of both momentum and mass. In other words, the fact that pressure is independent

of density introduces significant challenges in handling pressure-velocity coupling.

Both for constant-density flows and for flows where density is a function of tempera-

ture alone, the incompressible formulation is adopted, also referred to in some cases

as the pressure-based formulation. Among the methods used to compute pressure in

the incompressible formulation, the so-called projection methods involve solving a

Poisson equation for pressure. One of the most well-known and widely used projec-

tion methods is the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

algorithm, which, for clarity of exposition, will be presented below in its application

on staggered grids, as initially developed by Spalding and Patankar in 1972.

5.1 The Staggered Grid

Although not used in most cases of general interest, the analysis of this type of

grid is useful for understanding numerous concepts at the base of modern pressure-

velocity coupling algorithms. Considering what has already been seen previously, the

application of the finite volume method involves considering all quantities positioned

in the cell centre. In Fig. 5.1, a pressure field is shown with a distribution of values. s

that gives rise to the so-called “checkerboard problem”. Considering the momentum

conservation Eq. 5.6 relative to the first component of velocity, it will be necessary to

determine the pressure gradient .∂ p/∂x , considering the pressure values on the faces

.w and . e. By using linear interpolation to obtain the values of .pw and . pe, we obtain

5.1 The Staggered Grid 161

.

∂ p

∂x
=

pe − pw

δx
=

pE + pP

2
−

pP + pW

2
δx

=
pE − pW

2δx

where the equi-spacing of the computational grid has been considered.

Similarly, considering the momentum conservation Eq. 5.7 for the second com-

ponent of velocity, we obtain

.

∂ p

∂y
=

pN − pS

2δy
.

In both cases, in determining the pressure gradient, the pressure value in the cell

centre, . P , does not appear. Therefore, in the case of a checkerboard pressure distri-

bution, as shown in Fig. 5.1, the algorithm cannot account for the correct pressure

distribution: in this specific case, the algorithm would perceive a uniform pressure

field instead of a real pressure field with a checkerboard distribution. Obviously,

an incorrect pressure field would lead, when used in the solution of the conserva-

tion equations of momentum, to incorrect velocity fields. A possible remedy for the

checkerboard problem is to consider different control volumes (cells) for the various

quantities involved. Specifically, it is possible to consider a control volume for scalar

quantities (e.g. pressure) and a different control volume for each of the velocity com-

ponents considered-two in the two-dimensional case, three in the three-dimensional

case.

In order to simplify the understanding of this strategy, a uniform two-dimensional

Cartesian grid is considered, where the indices . I and . J (uppercase indices) are used

to indicate the centres of the cells for scalar quantities, and the indices . i and . j

(lowercase indices) are used to indicate the corresponding faces. The control volume

used for the scalar physical quantities is the one shown in Fig. 5.2; the control volume

used for the x-component of the velocity (. u) is the one shown in Fig. 5.3; the control

volume used for the y-component of the velocity (. v) is the one shown in Fig. 5.4.

Fig. 5.1 Checkerboard

pressure field

162 5 Pressure-Velocity Coupling

Fig. 5.2 Control volume

used for scalars

Fig. 5.3 Control volume

used for the x-component of

the velocity

Fig. 5.4 Control volume

used for the y-component of

the velocity

From Fig. 5.2, and more clearly from the following Figs. 5.3 and 5.4, it is evident

how the centres of the faces can be identified using both uppercase and lowercase

indices. The centre .i, J of face . i of the control volume in Fig. 5.2 is also the centre of

the control volume used for the . u component of velocity in Fig. 5.3. The centre . I, j

of face . j of the control volume in Fig. 5.2 is also the centre of the control volume

used for the .y-component of velocity in Fig. 5.4. In this case, the grids are called

backward staggered velocity grid because the grids used for the two components

of the velocity are shifted respectively towards the lower value of each of the two

indices used to identify the centre of the scalar cell: the centre of the cell for the . u

component of velocity is placed between indices .I − 1 and . I ; the centre of the cell

for the .y-component of velocity is placed between indices .J − 1 and . J , as shown in

Fig. 5.5.

5.2 Conservation of Momentum 163

Fig. 5.5 Backward

staggered grids for velocity

I

I + 1I 1
i + 1

J + 1

J 1

j + 1

i

JJ

j

I

5.2 Conservation of Momentum

Having defined the new coordinate system, it is possible to write the discretised

equation of conservation of momentum for each of the two velocity components

with reference to the new staggered grids. Initially, considering the . u component of

velocity, in Fig. 5.6, the cell used for writing the discretised momentum conservation

equation is shown. In detail, Fig. 5.6 shows:

• the cell whose centre is P with indices .(i, J);

• the centres .e, w, n, s—with indices respectively .(I, J), .(I − 1, J), .(i, j + 1),

.(i, j)—of the faces that delimit the cell;

• the centres .E,W, N , S—with indices respectively .(i + 1, J), .(i − 1, J), . (i, J +

1), .(i, J − 1)—of the cells adjacent to the considered cell.

In Chap. 3, it was seen that it is possible to write, for each cell of the computational

domain, the conservation equation of momentum for the component. u of the velocity

in the following discretised form

.aPuP =
∑

anbunb + Su (5.1)

where the subscript .P indicates the value at the centre of the considered cell; the

symbol .
∑

indicates the summation extended to the centres of all the cells that

share a face with the considered cell (of centre . P); the subscript .nb indicates all the

Fig. 5.6 Control volume

used for the . u component of

the velocity on backward

staggered grid

164 5 Pressure-Velocity Coupling

neighbouring cells that share a face with the considered cell (of centre . P). In the

two-dimensional case, it will be

.

∑

anbunb = aEuE + aWuW + aNuN + aSuS. (5.2)

.Su is the constant term of the linearised form .Su + SPuP of the component . u of the

source term .S�Vu (cf., Eq. 3.4) in which .�Vu is the volume (the surface in the two-

dimensional case) of the cell. By highlighting the contribution of the pressure from

the source term and considering the cells shown in Fig. 5.6, Eq. 5.1 can be expressed

as

. ai,Jui,J =
∑

anbunb −
pI,J − pI−1,J

δxu
�Vu + S�Vu

or, equivalently

.ai,Jui,J =
∑

anbunb +
(

pI−1,J − pI,J
)

Ai,J + bi,J . (5.3)

Notice that: (1) the pressure term has been expressed through linear interpolation

between the values at the faces of the control volume for the . u velocity component,

(2) it was set that .bi,J = S�Vu , (3) .Ai,J is the surface (length in the two-dimensional

case) of the faces .w and . e of the cell. Now, Eq. 5.2 can be written as

.

∑

anbunb = ai+1,Jui+1,J + ai−1,Jui−1,J + ai,J+1ui,J+1 + ai,J−1ui,J−1. (5.4)

The values of the coefficients .ai,J and .anb can be calculated using any of the dis-

cretisation schemes for convective-diffusive flows presented in Chap. 3. Using the

centred scheme, it will be

. aE = De −
Fe

2
,

aW = Dw −
Fw

2
,

aN = Dn −
Fn

2
,

aS = Ds −
Fs

2
,

aP = aW + aE + aN + aS + (Fe − Fw + Fn − Fs)

where. F and.D are the convective and diffusive mass flows respectively that cross the

faces . e, . w, . n, and . s. Regardless of the interpolation scheme applied, the coefficients

. a will always be a combination of the fluxes .F and . D, and for this reason, their

calculation is illustrated below for the cell used in the discretisation of the momentum

conservation equation in its . u component.
The convective fluxes are as follows:

5.2 Conservation of Momentum 165

. Fw = (ρu)w =
Fi,J + Fi−1,J

2
=

1

2

[

ρI,J + ρI−1,J

2
ui,J +

ρI−1,J + ρI−2,J

2
ui−1,J

]

,

Fe = (ρu)e =
Fi+1,J + Fi,J

2
=

1

2

[

ρI+1,J + ρI,J

2
ui+1,J +

ρI,J + ρI−1,J

2
ui,J

]

,

Fn = (ρv)n =
FI, j+1 + FI−1, j+1

2
=

1

2

[

ρI,J+1 + ρI,J

2
vI, j+1 +

ρI−1,J+1 + ρI−1,J

2
vI−1, j+1

]

,

Fs = (ρv)s =
FI, j + FI−1, j

2
=

1

2

[

ρI,J + ρI,J−1

2
vI, j +

ρI−1,J + ρI−1,J−1

2
vI−1, j

]

.

The diffusive fluxes are:

. Dw =
ŴI−1,J

xi − xi−1

,

De =
ŴI,J

xi+1 − xi
,

Dn =
ŴI−1,J+1 + ŴI,J+1 + ŴI−1,J + ŴI,J

4 (yJ − yJ−1)
,

Ds =
ŴI−1,J + ŴI,J + ŴI−1,J−1 + ŴI,J−1

4 (yJ+1 − yJ)
.

It can be noted that, when computing the flows, if a scalar value or a velocity compo-

nent is not available on the faces of the control volume, the calculation of an appro-

priate average between the values of the quantity at the closest points for which the

quantity itself is known has been used. The values of the two components . u and . v

of the velocity used for the diffusive fluxes are those resulting from the initial con-

ditions, or, if it is not the first iteration, those resulting from the previous iteration

of the solution algorithm: these must therefore be distinguished from the unknown

values that appear in the discretised Eq. 5.3 and in Eq. 5.4. What has been done so far

for the . u component of the velocity can be similarly reapplied to the . v component

with reference to Fig. 5.7.

The discretised form of the conservation equation of momentum for the . v

component of the velocity is

Fig. 5.7 Control volume

used for the . v component of

the velocity on a backward

staggered grid

166 5 Pressure-Velocity Coupling

.aI, jvI, j =
∑

anbvnb +
(

pI,J−1 − pI,J
)

AI, j + bI, j . (5.5)

The convective fluxes will be:

. Fw = (ρu)w =
Fi,J + Fi,J−1

2
=

1

2

[

ρI,J + ρI−1,J

2
ui,J +

ρI−1,J−1 + ρI−1,J−1

2
ui,J−1

]

,

Fe = (ρu)e =
Fi+1,J + Fi+1,J−1

2
=

1

2

[

ρI+1,J + ρI,J

2
ui+1,J−1 +

ρI,J−1 + ρI+1,J−1

2
ui+1,J−1

]

,

Fn = (ρv)n =
FI, j + FI, j+1

2
=

1

2

[

ρI,J + ρI,J−1

2
vI, j +

ρI,J+1 + ρI,J

2
vI, j+1

]

,

Fs = (ρv)s =
FI, j−1 + FI, j

2
=

1

2

[

ρI,J−1 + ρI,J−2

2
vI, j−1 +

ρI,J + ρI,J−1

2
vI, j

]

.

The diffusive flows will be:

. Dw =
ŴI−1,J−1 + ŴI,J−1 + ŴI−1,J + ŴI,J

4 (x I − yI−1)
,

De =
ŴI,J−1 + ŴI+1,J−1 + ŴI,J + ŴI+1,J

4 (x I+1 − x I)
,

Dn =
ŴI,J

y j+1 − y j
,

Ds =
ŴI,J−1

y j − y j−1

.

Also in this case, the values of the components. u and. v used to determine the convec-

tive flows are those resulting from the initial conditions or, if it is not the first iteration,

those resulting from the previous iteration of the solution algorithm. These values

must therefore be distinguished from those—unknown—appearing in the discretised

Eq. 5.5.

5.3 The SIMPLE Algorithm

From the general transport equation it is possible to derive (see Sect. 2.9) the

conservation equation of the momentum in the x direction

.

∂

∂x
(ρuu) +

∂

∂y
(ρuv) =

∂

∂x

(

µ
∂u

∂x

)

+
∂

∂y

(

µ
∂u

∂y

)

−
∂ p

∂x
+ Su, (5.6)

5.3 The SIMPLE Algorithm 167

the conservation equation of momentum in the y direction

.

∂

∂x
(ρuv) +

∂

∂y
(ρvv) =

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂y

(

µ
∂v

∂y

)

−
∂ p

∂y
+ Sv, (5.7)

the continuity equation

.

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (5.8)

in the case of a two-dimensional laminar stationary flow of a Newtonian fluid. Note

that in the two conservation equations of the momentum, the contribution of the

pressure has been expressed as a source term to highlight its importance, which will

be shown below.

In Chap. 3, the finite volume method is illustrated for the solution of the general

transport equation, always considering the velocity field of the fluid transporting

a generic quantity . φ. This velocity field . u, with its three components .u, v, w, is

governed by the three Eqs. 5.6, 5.7, 5.8 whose solution presents three main problems:

• the convective terms contains non-linear quantities (e.g. .ρuu in Eq. 5.6);

• each component of the velocity is linked to the others because in each equation all

the three components of the velocity appear;

• for the generic control volume, it is not possible to write a transport equation for

the pressure. The pressure appears in the two momentum conservation equations

but not in the continuity equation.

Regarding the pressure, in the case of compressible flows the continuity equation can

be used as a transport equation for density and, in addition to Eqs. 5.6 and 5.7, the

conservation equation of energy can be used as a transport equation for temperature.

Finally, the pressure can be obtained from the equation of state, given the density

and temperature.

In the case of incompressible flows, being constant, the density is not linked

to the pressure. The pressure value, if exact, leads to, with the two equations of

momentum, a velocity field also satisfying the continuity equation. Specifically, to

solve the conservation equation of momentum in the two-dimensional case, there are

three unknowns (the two components of the velocity and the pressure) against only

two transport equations (one momentum equation for each of the two components

of the velocity). The use of the continuity equation is difficult in this case because,

as seen, it does not contain the pressure term. The SIMPLE algorithm is one of the

techniques used to solve this problem, which is better known as the pressure-velocity

coupling problem.

Before showing the details of this algorithm, it is worth noting that, given the

exact pressure field . p, it is possible to solve the conservation equation of momentum

for each of the two (in the two-dimensional case) components of the velocity; the

velocity field obtained will satisfy both the conservation of momentum equation and

the continuity equation.

168 5 Pressure-Velocity Coupling

The SIMPLE algorithm will be illustrated for a two-dimensional laminar station-

ary flow. The iterative process begins with the imposition of a pressure field .p∗ as

a first guess and the subsequent solution of the discretised momentum conservation

equation for each of the two components of velocity:

. ai,Ju
∗
i,J =

∑

anbu
∗
nb +

(

p∗
I−1,J − p∗

I,J

)

Ai,J + bi,J ,

aI, jv
∗
I, j =

∑

anbv
∗
nb +

(

p∗
I,J−1 − p∗

I,J

)

AI, j + bI, j .

At this stage, the .p′ field for pressure correction is defined as the difference between

the exact . p and the initially imposed .p∗ pressure field:

.p′ = p − p∗. (5.9)

Similarly, a correction field can be defined for both components of the velocity:

.u = u∗ + u′, (5.10)

.v = v∗ + v′. (5.11)

Moreover, the discretised equation of conservation of momentum, when applied to

the exact pressure field . p, will yield a velocity field that satisfies the continuity

equation. By subtracting the discretised equation of momentum for the pressure field

.p∗ from that for the exact pressure field . p, the following two equations are obtained,

one for each component:

. ai,J
(

ui,J − u∗
i,J

)

=
∑

anb
(

unb − u∗
nb

)

+
[(

pI−1,J − p∗
I−1,J

)

−
(

pI,J − p∗
I,J

)]

Ai,J ,

aI, j

(

vI, j − v∗
I, j

)

=
∑

anb
(

vnb − v∗
nb

)

+
[(

pI,J−1 − p∗
I,J−1

)

−
(

pI,J − p∗
I,J

)]

AI, j .

Furthermore, using the correction formulas (5.9), (5.10), and (5.11), it becomes

. ai,Ju
′
i,J =

∑

anbu
′
nb +

(

p′
I−1,J − p′

I,J

)

Ai,J ,

aI, jv
′
I, j =

∑

anbv
′
nb +

(

p′
I,J−1 − p′

I,J

)

AI, j .

At this stage, the greatest approximation is introduced by the SIMPLE algorithm.

The terms .
∑

anbu
′
nb and .

∑

anbv
′
nb are disregarded in order to obtain

.u′
i,J =

(

p′
I−1,J − p′

I,J

) Ai,J

ai,J
=

(

p′
I−1,J − p′

I,J

)

di,J ,

v′
I, j =

(

p′
I,J−1 − p′

I,J

) AI, j

aI, j
=

(

p′
I,J−1 − p′

I,J

)

dI, j .

5.3 The SIMPLE Algorithm 169

Specifically, the value of the corrections to be inserted in Eqs. 5.10 and 5.11 to obtain

velocity values that will no longer be the exact ones, even though these approximated

values will be treated as exact during this phase to facilitate comprehension. In

summary,

.ui,J = u∗
i,J +

(

p′
I−1,J − p′

I,J

)

di,J , (5.12)

.vI, j = v∗
I, j +

(

p′
I,J−1 − p′

I,J

)

dI, j (5.13)

and, similarly

.ui+1,J = u∗
i+1,J +

(

p′
I,J − p′

I+1,J

)

di+1,J wi th di+1,J =
Ai+1,J

ai+1,J

, (5.14)

.vI, j+1 = v∗
I, j+1 +

(

p′
I,J − p′

I,J+1

)

dI, j+1 wi th dI, j+1 =
AI, j+1

aI, j+1

. (5.15)

Considering that, in addition to the conservation equations of momentum, the velocity

field must also satisfy the continuity equation. Referring to Fig. 5.8, the discretised

form of the continuity equation can be expressed as

.

[

(ρuA)i+1,J − (ρuA)i,J
]

+
[

(ρuA)I, j+1 − (ρuA)I, j
]

= 0.

Substituting the values of.ui,J ,.vI, j ,.ui+1,J , and.vI, j+1 given respectively by Eqs. 5.12,

5.13, 5.14, and 5.15, the discretised equation for pressure correction is obtained:

. aI,J p
′
I,J = aI+1,J p

′
I+1,J + aI−1,J p

′
I−1,J + aI,J+1 p

′
I,J+1 + aI,J−1 p

′
I,J−1 + b′

I,J

(5.16)

in which

. aI+1,J = (ρd A)i+1,J ,

aI−1,J = (ρd A)i,J ,

aI,J+1 = (ρd A)I, j+1 ,

Fig. 5.8 Control volume

used for the discretisation of

the continuity equation on a

staggered backward grid (see

also Fig. 5.2)

170 5 Pressure-Velocity Coupling

aI,J −1 = (ρd A)I, j ,

aI,J = aI+1,J + aI −1,J + aI,J +1 + aI,J−1,

b′
I,J =

(

ρu∗ A
)

i,J
−

(

ρu∗ A
)

i+1,J
+

(

ρu∗ A
)

I, j
−

(

ρu∗ A
)

I, j+1
.

It can be noted that the source term .b′
I,J derives from the initial imposition of a

velocity field, whose components .u∗ and .v∗ are not the exact values, but are either

first-guess values or those resulting from the preceding iteration. Solving Eq. 5.16

for each cell in the computational domain results in the .p′ pressure correction field.

Using the correction formula (5.9), the pressure correction field determines the . p

pressure field, certainly respecting the continuity equation. Similarly, the correction

formulas (5.10) and (5.11) are used for the two components of velocity. The velocity

field thus obtained certainly respects the conservation of mass equation but does

not necessarily satisfy the two conservation equations of momentum (due to the

approximation made by neglecting the terms .
∑

anbu
′
nb and .

∑

anbv
′
nb).

1. The velocity and pressure fields obtained in this way are referred to as corrected;

2. the procedure is iteratively repeated until the conservation equations—mass and

momentum—are simultaneously satisfied.

It is important to note that neglecting the terms.
∑

anbu
′
nb and.

∑

anbv
′
nb does not affect

the final solution (the one obtained at the end of the iterative procedure) because, once

convergence is achieved, the pressure correction term .p′ and the velocity correction

terms become very small—effectively zero. The flowchart of the SIMPLE algorithm

is shown in Fig. 5.9. In this figure, the reader can anticipate the implicit solution

approach—which enhances numerical stability—as well as the explicit approach.

This explains the ‘Semi-Implicit’ part of the name of this algorithm.

5.3.1 Numerical Example of Application of the Pressure

Equation of Correction

The case of a steady unidimensional incompressible flow inside a duct of constant

section will be analysed in this case. It is immediately evident that the solution is

a constant velocity field throughout the duct. This example demonstrates that by

solving the pressure correction equation, an initial velocity field with a non-uniform

distribution can still lead to the exact solution that respects the mass conservation

equation.

From Fig. 5.10, it is evident that a staggered backward grid is employed. The

pressure is computed at the cell centres .I = A, B,C, D (as seen in the cell bounded

by points 1 and 2), while the velocity is computed at the cell centres . i = 1, 2, 3, 4

(as seen in the cell bounded by points A and B). The purpose of this example is

to demonstrate the validity of the procedure that underlies the SIMPLE algorithm.

5.3 The SIMPLE Algorithm 171

Fig. 5.9 Flowchart of the SIMPLE algorithm

Fig. 5.10 Discretisation

diagram of the flow inside a

duct with constant section

Specifically, the equation of pressure correction (5.16) is utilised to compute the

pressure correction field . p′, followed by the velocity correction field according to

the

.u′ = d
(

p′
I − p′

I+1

)

(5.17)

from which the corrected velocity field is derived according to the

172 5 Pressure-Velocity Coupling

. u = u∗ + u′.

The data for the problem are as follows:

• constant density .ρ = 1 kg/m3;

• constant duct cross-section . A;

• the coefficient . d is taken as a constant value of 1 (see Eqs. 5.12, 5.14, 5.13, and

5.15 in Eq. 5.17);

• the boundary conditions are: .u1 = 10 m/s and .pD = 0 Pa;

• the initial velocity field for the calculations is: .u∗
2 = 8 m/s, .u∗

3 = 11 m/s, and . u∗
4 =

7 m/s.

The solution to this problem is a constant velocity field of .10 m/s. The SIMPLE

algorithm is applied to compute the pressure correction at nodes.I = A, B,C, D and

the corrected velocity at nodes .i = 2, 3, 4 to verify the correctness of the numerical

solution. In this example, the pressure correction Eq. 5.16 is

.aP p
′
P = aW p′

W + AE p
′
E + b′ (5.18)

with

. aW = (ρd A)w ,

aE = (ρd A)e ,

aP = aW + aE ,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
.

Equation 5.18 is applied to nodes .I = A, B,C, D, beginning with nodes that are not

part of boundary cells. For node . B, this gives:

. aW = (ρd A)w = (ρd A)2 = 1 × 1 × A = A,

aE = (ρd A)e = (ρd A)3 = 1 × 1 × A = A,

aP = aW + aE = A + A = 2A,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
=

(

ρu∗A
)

2
−

(

ρu∗A
)

3
= (1 × 8 × A) − (1 × 11 × A) = −3A

thus, the pressure correction equation for node . B is expressed as

. (2A)p′
B = (A)p′

A + Ap′
C + (−3A).

Considering that section . A does not change, it is

.2p′
B = p′

A + p′
C − 3.

5.3 The SIMPLE Algorithm 173

For node . C we have:

. aW = (ρd A)w = (ρd A)3 = 1 × 1 × A = A,

aE = (ρd A)e = (ρd A)4 = 1 × 1 × A = A,

aP = aW + aE = A + A = 2A,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
=

(

ρu∗A
)

3
−

(

ρu∗A
)

4
= (1 × 11 × A) − (1 × 7 × A) = 4A

thus, the pressure correction equation for node . C is expressed as

. (2A)p′
C = (A)p′

B + Ap′
D + 4A.

Given that the cross-section . A remains constant, it follows that

. 2p′
C = p′

B + p′
D + 4.

For the centre . A, it is the centre of a cell that lacks a neighbouring cell to the left. In

this case, .aW is set to 0, and the boundary condition is considered by incorporating

its contribution as a source term:

. aW = 0,

aE = (ρd A)e = (ρd A)2 = 1 × 1 × A = A,

aP = aW + aE = 0 + A = A,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
+ (ρu1A) =

(

ρu∗A
)

2
− (ρuA)1 = −(1 × 8 × A) + (1 × 10 × A) = 2A

thus, the pressure correction equation for node . A is expressed as

. Ap′
A = 0 + Ap′

B + 2A.

Given that the cross-section . A remains constant, it follows that

. p′
A = p′

B + 2.

For node . D, the pressure correction is not calculated, as .p′
D = 0 due to the pressure

at .D being set as a boundary condition.

The system of four equations to determine the pressure corrections .p′
A, .p

′
B , .p

′
C ,

and .p′
D will be

.p′
A = p′

B + 2

2p′
B = p′

A + p′
C − 3

2p′
C = p′

B + p′
D + 4

p′
D = 0

174 5 Pressure-Velocity Coupling

that is, by imposing .p′
D = 0,

. p′
A = p′

B + 2

2p′
B = p′

A + p′
C − 3

2p′
C = p′

B + 4

which can be written in matrix form as

.

⎡

⎣

1 −1 0

−1 2 −1

0 −1 2

⎤

⎦

⎡

⎣

p′
A

p′
B

p′
C

⎤

⎦ =

⎡

⎣

2

−3

4

⎤

⎦ .

The solution to this system of equations gives .p′
A = 4, .p′

B = 2, and .p′
C = 3. Once

the pressure corrections are known, the corrected velocities can be obtained using

the relation .u = u∗ + d(p′
I − p′

I+1).

For node . 2:

. u2 = u∗
2 + d(p′

A − p′
B) = 8 + 1 × (4 − 2) = 10 m/s.

For node . 3:

. u3 = u∗
3 + d(p′

B − p′
C) = 11 + 1 × (2 − 3) = 10 m/s.

For node . 4:

. u4 = u∗
4 + d(p′

C − p′
D) = 7 + 1 × (3 − 0) = 10 m/s.

The solution obtained matches the exact solution. Due to its simplicity, this example

has enabled (a) obtaining the exact solution in a single iteration, and (b) not requiring

the calculation of the momentum conservation equation to determine the velocity

field used in the pressure correction equation. In more general cases, the coefficient

. d cannot be treated as constant, and the conservation of momentum equation must

be solved at each iteration to determine the coefficients of the pressure correction

equation in all cells of the computational domain.

5.3.2 Example of Application of the SIMPLE Algorithm

In this example, a non-viscous, incompressible and stationary flow within a converg-

ing duct is considered. As shown in Fig. 5.11, the computational domain is discretised

using the forward staggered grid method, with five equidistant nodes for pressure

calculation and four for velocity calculation. The grid is forward staggered because

the centre of the cell bounded by points A and B (labelled . 1 in Fig. 5.11), initially

5.3 The SIMPLE Algorithm 175

Fig. 5.11 Discretisation

diagram of the flow within a

variable section duct

Fig. 5.12 Value of the duct

area and the exact pressure

calculated using Bernoulli’s

equation at cell centres . A, . B,

. C , .D and . E

used for velocity calculation, is shifted in the increasing direction (from left to right)

relative to the centre of the cell bounded by points 1 and 2 (labelled . A in Fig. 5.11),

which is initially used for pressure calculation. The aim of the example is to calcu-

late the pressure in the cell centres .A, B,C, D, E and the velocity in the cell centres

.1, 2, 3, 4.

The data given for solving the problem are:

• the fluid density is constant and equal to .1 kg/m3;

• the length of the duct is . 2 m, implying that the extension of a single cell is . �x =

2/4 = 0.5 m;

• the inlet section at centre. A has.AA = 0.5 m2 and the outlet section at centre. E has

.AE = 0.1 m2. Assuming a linear variation of the duct section between the inlet

and outlet, Figs. 5.12 and 5.13 show the areas of the sections at the locations of

the centres of the cells used for pressure and velocity calculations;

• the boundary conditions are:

– total pressure .p0 = 10 Pa at the inlet section in correspondence with the centre

of cell . A;

– static pressure.pE = 0 Pa at the outlet section in correspondence with the centre

of cell . E .

• For velocity field initialisation, an initial guess of the flow rate .ṁ = 1 kg/s is

assumed, and based on this, the velocity is calculated using .u = ṁ/(ρA). Thus,

the following initial velocity values 1 for nodes .1, 2, 3, 4 are computed:

1 Although only 5 decimal places are shown here and in the following, the calculations performed

to obtain the results are in double precision.

176 5 Pressure-Velocity Coupling

Fig. 5.13 Value of the duct

area and the exact speed

calculated using Bernoulli’s

equation at cell centres . 1, . 2,

. 3, . 4 and . 5

. u1 = ṁ/(ρA1) = 1/(1 × 0.45) = 2.22222 m/s,

u2 = ṁ/(ρA2) = 1/(1 × 0.35) = 2.85714 m/s,

u3 = ṁ/(ρA3) = 1/(1 × 0.25) = 4.00000 m/s,

u4 = ṁ/(ρA4) = 1/(1 × 0.15) = 6.66666 m/s;

• the initial pressure field is imposed assuming a linear variation of the pres-

sure between nodes . A and . E : .p∗
A = p0 = 10 Pa, .p∗

B = 7.5 Pa, .p∗
C = 5 Pa, . p∗

D =

2.5 Pa, .p∗
E = 0 Pa (as per boundary condition).

The exact solution to this stationary, incompressible, non-viscous problem can be

derived using Bernoulli’s equation:

. p0 = pN +
1

2
ρ

(

ṁ

ρAN

)2

where the subscript.N denotes the generic pressure node. Considering node. E , where

.AE = 0.1 m2, and the boundary conditions.p0 = 10 Pa and.pE = 0 Pa, the flow rate

is.ṁ = 0.44721 kg/s. Knowing the flow rate, the exact values of pressure and velocity

can be determined, as shown in Figs. 5.12 and 5.13, respectively, for the centres . A,

. B, . C , . D, .E and for nodes . 1, . 2, . 3, . 4, and . 5.

The governing equations for this stationary, one-dimensional, incompressible, and

non-viscous problem are as follows: the conservation of mass equation

.

d

dx
(ρAu) = 0

and the conservation of momentum equation

.ρAu
du

dx
= −A

dp

dx
. (5.19)

It should be noted that, although the problem is incompressible, the density term has

not been removed to avoid complicating aspects related to dimensional analysis.

5.3 The SIMPLE Algorithm 177

In this case, the discretised form of the momentum conservation Eq. 5.19 is

. (ρAu)e ue − (ρAu)w uw =
�p

�x
�V (5.20)

where .�p = pw − pe, and .�V is the volume (area in the two-dimensional case,

length in the one-dimensional case) of the considered cell. Using the standard notation

introduced earlier, Eq. 5.20, applied to the generic cell of centre . P , can be written as

.aPu
∗
P = aWu∗

W + aEu
∗
E + Su . (5.21)

In the case where the upwind scheme is applied, the coefficients of Eq. 5.21 can be

expressed as

. aW = Dw + max(Fw, 0),

aE = De + max(0,−Fe), (5.22)

aP = aW + aE + (Fe − Fw).

Since the flow is inviscid, the terms.Dw and.De will be zero. For the terms.Fw and.Fe,

the area values reported in Fig. 5.13 will be used; in this example, the velocity values

for the calculation of the flows .Fe and .Fw will be obtained by averaging the values

at the centres of the cells that share the considered face. At the first iteration, the

velocity values are those of the first guess. For the subsequent iterations, the velocity

values are those obtained after solving the equation of pressure correction.

The source term .Su will be

. Su =
�p

�x
× �V =

�p

�x
× Aav�x = �p ×

1

2
(Aw + Ae)

where the approximation given by setting .Aav = 1/2 (Aw + Ae) has an order of

accuracy consistent with the upwind scheme.

Finally, the expression for the coefficients of the discretised momentum conser-

vation equation will be

. Fw = ρAwuw,

Fw = ρAwuw,

aW = Fw,

aE = 0,

aP = aW + aE + (Fe − Fw)

Su = �p ×
1

2
(Aw + Ae) = �p × AP .

In which, with reference to Eq. 5.22, .aE = 0 is set.

178 5 Pressure-Velocity Coupling

The parameter. d, required for the calculation of velocity and pressure corrections,

can be defined here as

.d =
Aav

aP

=
aw + Ae

2aP

. (5.23)

Discretisation of the Pressure Correction Equation

The discretised form of the mass conservation equation for the central cell P is

. (ρAu)e − (ρAu)w = 0

and the corresponding pressure correction equation is

. aP p
′
P = aW p′

W + aE p
′
E + b′

with

. aW = (ρd A)w ,

aE = (ρd A)e ,

b′ = (F∗
w − F∗

e)

where Eq. 5.23 provides the expression for the parameter. d. In the SIMPLE algorithm,

the pressure correction is used to determine the corrected pressure and velocity:

. u′ = d
(

p′
I − p′

I+1

)

,

p = p∗ + p′,

u = u∗ + u′.

Numerical Values of Momentum Conservation Equation Coefficients

Initially, the internal nodes 2 and 3 are considered.

• Node 2

.Fw = ρAwuw = 1 × 0.4 ×
u1 + u2

2
= 1 × 0.4 ×

2.2222 + 2.8571

2
= 1.01587,

Fw = ρAwuw = 1 × 0.3 ×
u2 + u3

2
= 1 × 0.3 ×

2.8571 + 4

2
= 1.02857,

aW = Fw = 1.01587,

aE = 0,

aP = aW + aE + (Fe − Fw) = 1.01587 + 0 + (1.02857 − 1.01587) = 1.02857,

5.3 The SIMPLE Algorithm 179

Su = �p ×
1

2
(Aw + Ae) = �p × AP

= �p × A2 = (pB − pC)A2 = (7.5 − 5)0.35 = 0.875.

Therefore, for node 2, the discretised momentum conservation equation is

. 1.02857u2 = 1.01587u1 + 0.875.

For this node, the value of the parameter . d is

. d2 =
A2

aP

=
0.35

1.02857
= 0.34027.

• Node 3

By repeating the same procedure, the result is:

. 1.06666u3 = 1.02857u2 + 0.625

and

. d3 =
A3

aP

=
0.25

1.06666
= 0.23437.

• Node 1

The cell centred at node 1 must be treated specially because one of its faces is a

boundary face. In particular, on the face centred at node . A, a fixed total pressure

of .10 Pa is imposed. This pressure corresponds to the static pressure of the fluid

at rest inside the tank to which the entrance of the duct is connected. At node

. A, since the velocity is non-zero, the static pressure will be lower than the total

pressure. Indicating with .uA the velocity at the centre of section . A, it is possible to

use Bernoulli’s equation to obtain the value of the static pressure at. A as a function

of the total pressure:

.pA = p0 −
1

2
ρu2A. (5.24)

Considering the continuity equation, the result is

.uA = u1A1

1

AA

(5.25)

and substituting into Eq. 5.24

.pA = p0 −
1

2
ρu21

(

A1

A2

)2

. (5.26)

180 5 Pressure-Velocity Coupling

Considering the expression for .pA, the discretised momentum conservation

equation for the cell centred at node 1, using the upwind scheme, is (see Eq. 5.22):

.Feu1 − FwuA = (pA − pB) A1 (5.27)

where the term.Fw = ρuAAA is calculated using the continuity equation (Eq. 5.25):

. Fw = ρuAAA = ρu1A1.

At this stage, Eq. 5.27 can be written as

. Feu1 − Fwu1
A1

AA

=

[

p0 −
1

2
ρu21

(

A1

A2

)2

− pB

]

A1

and rearranging

.

[

Fe − Fw

A1

AA

+ Fw

1

2

(

A1

A2

)2
]

u1 = (p0 − pB) A1 (5.28)

From this, it is clear that the term in square brackets multiplying .u1 corresponds

to the coefficient .aP for this cell. To stabilise the iterative process, the term

.Fw

1

2

(

A1

A2

)

u1 is moved to the right-hand side of Eq. 5.28, replacing the current

value of .u1 with the value from the previous iteration (see Sect. 3.1.6 in relation

to the deferred correction strategy):

.

[

Fe + Fw

1

2

(

A1

A2

)2
]

u1 = (p0 − pB) A1 + Fw

A1

AA

uold1 . (5.29)

Turning to the numerical values, we have:

. ua = u1
A1

A2

= 2.2222 ×
0.45

0.5
= 2,

Fw = (ρuA)w = ρuAAA = 1 × 2 × 0.5 = 1.

The flow .Fe is calculated as for the face of an interior point:

.Fe = (ρuA)e = 1 ×
u1 + u2

2
× 0.4 = 1 ×

2.2222 + 2.8571

2
× 0.4 = 1.01587,

aW = 0,

aE = 0,

aP = Fe + Fw

1

2

(

A1

A2

)2

= 1.01587 + 1 × 0.5 ×

(

0.45

0.5

)2

= 1.42087.

5.3 The SIMPLE Algorithm 181

By setting .p0 = 10 Pa and .uold1 = 2.2222 m/s, the source term .Su for this cell can

be written as

. Su = (p0 − pB) A1 + Fw

A1

AA

uold1 = (10 − 7.5) × 0.45 + 1 ×
0.45

0.5
× 2.22222 = 3.125.

Thus, for node 1, the discretised momentum conservation equation is

. 1.42087u1 = 3.125.

The value of the parameter . d at this node is

. d1 =
A1

aP

=
0.45

1.4209
= 0.31670.

• Node 4

. Fw = (ρuA)w = 1 ×
u3 + u4

2
× 0.2 = 1.06666.

As for the east face of the cell with this node at its centre, velocity values are not

available at the centre of one of the two cells it belongs to, as the pressure, not the

velocity, is imposed as a boundary condition on this face. The mass flux .Fe on this

face is thus calculated, assuming it coincides with the flow rate passing through

the duct. Therefore,

. Fe = (ρuA)4 .

Given the initially assumed flow rate of . 1 kg/s, it follows that

. aW = Fw = 1.06666,

aE = 0,

aP = aW + aE + (Fe − Fw) = 1.06666 + 0 + (1 − 1.06666) = 1,

Su = �p × Aav = (pD − PE) × A4 = (2.5 − 0) × 0.15 = 0.375

where the boundary condition.pE = 0 Pa has been applied. Finally, the discretised

momentum conservation equation for node 4 becomes

. 1u4 = 1.0666u3 + 0.375.

The value of the parameter . d at this node is

.d4 =
A4

aP

=
0.15

1
= 0.15.

182 5 Pressure-Velocity Coupling

In conclusion, the discretised momentum conservation equations for the four velocity

nodes are

. 1.42087u1 = 3.125,

1.02857u2 = 1.01587u1 + 0.875,

1.06666u3 = 1.02857u2 + 0.625,

1.00000u4 = 1.0666u3 + 0.375.

The solution of this system is

. u1 = 2.19935 m/s,

u2 = 3.02289 m/s,

u3 = 3.50087 m/s,

u4 = 4.10926 m/s.

These are the first-attempt speeds in the pressure correction calculation procedure,

that is, the speeds marked with the superscript . ∗ when the SIMPLE algorithm was

illustrated.

5.3.2.1 Numerical Values of the Coefficients of the Pressure Correction

Equation

The centres of the cells used for pressure calculation are now used. Nodes . B, . C , and

.D are internal nodes.

• Node B

For this node it will be

. aW = (ρd A)1 = 1 × 0.3167 × 0.45 = 0.14251,

aE = (ρd A)2 = 1 × 0.34027 × 0.35 = 0.11909,

F∗
w = (ρu∗A)1 = 1 × 2.199352 × 0.45 = 0.98971,

F∗
e = (ρu∗A)2 = 1 × 3.022894 × 0.35 = 1.05801,

aP = aW + aE = 0.14251 + 0.11909 = 0.26161,

b′ = F∗
w − F∗

e = 0.98971 − 1.05801 = −0.06830.

Therefore, the discretised pressure correction equation. aC p
′
C = aW p′

W + aE p
′
E +

b′, for node . B, becomes

.0.26161p′
B = 0.14251p′

A + 0.11909p′
C − 0.06830.

5.3 The SIMPLE Algorithm 183

• Node C

Similarly to what was done for node . B, for this node, it is

. 0.17769p′
C = 0.11909p′

B + 0.058593p′
D + 0.18279.

• Node D

Similarly to what was done for node . B, for this node it is

. 0.081093p′
D = 0.058593p′

C + 0.25882.

• Node E

On this node the boundary condition that sets the pressure to zero is imposed. Since

the pressure is known, the value of the pressure correction will be zero: .p′
E = 0.

• Node A

On this node the boundary condition that sets the total pressure is imposed. For

simplicity, Eq. 5.26 is reported here.

.pA = p0 −
1

2
ρu21

(

A1

A2

)2

(5.30)

Knowing the pressure and speed values, the total pressure value is obtained. In

the SIMPLE algorithm, the available velocity value before the solution of the

pressure correction equation is the one marked with the superscript . ∗, resulting

from the solution of the momentum conservation equation at the previous iteration.

Nevertheless, the value of static pressure, if calculated with Eq. 5.30, is consistent

with the current velocity value. For this reason, at node. A, the value of the pressure

correction is set to zero: .p′
A = 0.

In conclusion, the discretised pressure correction equations for the three pressure

nodes are:

. 0.26161p′
B = 0.11909p′

C − 0.06830,

0.17769p′
C = 0.11909p′

B + 0.058593p′
D + 0.18279,

0.081093p′
D = 0.058593p′

C + 0.25882.

The solution of this system is

.p′
A = 0,

p′
B = 1.63935,

p′
C = 4.17461,

p′
D = 6.20805,

p′
E = 0.

184 5 Pressure-Velocity Coupling

Knowing the value of the pressure correction, it is possible to obtain the value of the

corrected pressure

. pB = p∗
B + p′

B = 7.5 + 1.63935 = 9.13935,

pC = p∗
C + p′

C = 5 + 4.17461 = 9.17461,

pD = p∗
D + p′

D = 2.5 + 6.20805 = 8.70805

and, therefore, the corrected speeds after the first iteration.

. u1 = u∗
1 + d1(p

′
A − p′

B) = 2.19935 + 0.31670 × (0 − 1.63935) = 1.68015 m/s,

u2 = u∗
2 + d2(p

′
B − p′

C) = 3.02289 + 0.34027 × (1.63935 − 4.17461) = 2.16020 m/s,

u3 = u∗
3 + d3(p

′
C − p′

D) = 3.50087 + 0.23437 × (4.17461 − 6.20805) = 3.02428 m/s,

u4 = u∗
4 + d4(p

′
D − p′

E) = 4.10926 + 0.15 × (6.20805 − 0) = 5.04047 m/s.

The value of the static pressure at node . A is also known after the first iteration:

. pA = p0 −
1

2
ρu21

(

A1

A2

)2

= 10 −
1

2
× 1 × (1.68015 ×

0.45

0.5
)2 = 8.85671.

With the known velocity values, it is possible to calculate the value of the flow rate

at each of the four velocity nodes:

. ρu1A1 = 0.75607,

ρu2A2 = 0.75607,

ρu3A3 = 0.75607,

ρu4A4 = 0.75607.

Observing the values obtained for the flow rate after the first iteration, it can be

deduced that:

• since the values are the same for each of the nodes in this numerical example, one

of the aspects that makes the SIMPLE algorithm so widely used and popular is

highlighted: at each iteration, the continuity equation is always respected, even if

the velocity field does not satisfy the momentum conservation equation.

• the flow rate value obtained at the first iteration differs by .69% from that deter-

mined with the Bernoulli equation, equal to .0.44721 kg/s: this is mainly due to the

fact that the coefficients of the discretised momentum conservation equation were

obtained based on the first guess values for the velocity. To obtain a velocity and

pressure field that simultaneously satisfy both the mass and momentum conserva-

tion equations, further iterations will need to be performed, ideally until the perfect

satisfaction of the two equations is achieved. In reality, given the finite number

5.3 The SIMPLE Algorithm 185

of digits with which computers can store numbers and the consequent limited

precision, the perfect balance between the mass conservation equation (i.e., the

pressure correction equation) and the momentum conservation equation will be

impossible to achieve. As a consequence, the iterative procedure will be stopped

when further iterations produce negligible variations in pressure and velocity.

Chapter 6

OpenFOAM®

In general, a solver based on the finite volume method applies the discretised trans-

port equations to all the cells in the computational domain. This results in a number of

algebraic equations whose system, once solved, provides the solution for all trans-

ported quantities. For this to be possible, it is necessary to provide very precise

information:

• the computational grid (mesh);

• the boundary and initial conditions;

• physical properties such as density, viscosity, diffusion coefficient, etc.;

• the spatial discretisation scheme for each term (convective, diffusive, source) of

the conservation equations;

• the time discretisation scheme;

• the strategy for solving the linear system constituted by the discretised conservation

equations applied to each element of the grid;

• the value of the parameters (under-relaxation factors, stop condition, etc.) that

regulate the execution of the resolution process.

In the case of OpenFOAM®, this information is provided through text files contained

in the folder of the case to be executed or in sub-folders:

• the computational grid is provided through the files contained in the directory

constant/polymesh;

• the initial and boundary conditions are contained in the files located in the

folder 0;

• the discretisation schemes definition is contained in the file fvSchemes inside

the folder system;

• the information related to the solution of the system of differential algebraic equa-

tions and the under-relaxation factors are contained in the file fvSolution inside

the folder system;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_6

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_6&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6
https://doi.org/10.1007/978-3-031-88957-8_6

188 6 OpenFOAM®

• the value of the parameters that regulate the execution of the process resolution is

contained in the file controlDict inside the folder system.

6.1 Discretisation Schemes

In the file fvSchemes, the selected discretisation schemes are contained, one for

each term of the general transport equation. Figure 6.1 shows an extract of this file.

• the area identified by the word ddtSchemes is the one in which the time

discretisation is defined;

• the area identified by the word gradSchemes is the one in which it is defined how

to calculate, in the cell centre, the gradient of the transported quantity;

• the area identified by the word divSchemes is the one in which the discretisation

of the convective terms is defined;

• the area identified by the word laplacianSchemes is the one where the discretisa-

tion of the diffusive terms is defined;

• the area identified by the word interpolationSchemes is the one where the type of

interpolation chosen to obtain the value of the transported quantity on the centroid

of the face from that in the centroid of the adjacent cells is defined;

• the area identified by the word snGradSchemes is the one where the scheme for

computing the normal to the face component of the gradient at the centroid of the

face is defined. The calculation of this quantity, limited to the case of diffusive

terms, is specified in the area laplacianSchemes.

To know, for each item, what the possible values are, simply modify the word origi-

nally present in the file so that it is incorrect (for example, backward -> backward)

and launch the solver. The program will stop, providing the list of acceptable values.

Fig. 6.1 Extract from the

file fvSchemes

6.1 Discretisation Schemes 189

6.1.1 Temporal Discretisation Schemes

The source code of the available time discretisation schemes is contained in the folder

WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes.

The most frequently used schemes are:

• steadyState, used for stationary calculations;

• Euler, first-order accurate and used to perform non-stationary calculations;

• backward, second-order accurate and used to perform non-stationary calculations;

• CrankNicolson, second-order accurate and used to perform non-stationary

calculations.

First-order accurate schemes are stable and do not cause non-physical oscillations,

but the low level of accuracy may be inadequate. Second-order accurate schemes,

while more accurate, can give rise to non-physical oscillations. In the case of the

Euler scheme, the time integration takes place according to the following formula:

.

∫

V

∂φ

∂t
dV ≈

(

φ − φ0
) V

�t
(6.1)

where .φ0 is the column vector whose terms represent the value of the considered

quantity in all the cells of the computational domain at the previous time. Equation 6.1

modifies the system of equations resulting from the application of the conservation

equations, represented in matrix form, as follows:

.

⎡

⎢
⎢
⎣

� ∗ ∗

∗ � ∗

∗ � ∗

∗ ∗ �

⎤

⎥
⎥
⎦

[

φ
]

=

⎡

⎢
⎢
⎣

∗

∗

∗

∗

⎤

⎥
⎥
⎦

. (6.2)

Specifically, the main diagonal of the coefficients matrix is modified by the presence

of the term .
V
�t
: as the time integration interval decreases, there will be an increase in

the value of this term, which will contribute to improve the diagonal dominance of

the matrix. The term .φ0 V
�t

instead modifies the vector of known terms on the right

hand side of Eq. 6.2.

In the case of the backward scheme, the time integration takes place according to

the following formula

.

∫

V

∂φ

∂t
dV ≈

(

3φ − 4φ0 + φ00
) V

2�t
(6.3)

where .φ00 is the column vector whose terms represent the value of the considered

quantity in all the cells of the computational domain two time steps before the cur-

rent step. The implementation of the Crank-Nicolson scheme (see also Sect. 3.5.2)

involves the use of a blending factor .ψ that allows a gradual transition from a first-

order accurate scheme, coinciding with the Euler scheme, to a second-order accurate

190 6 OpenFOAM®

Fig. 6.2 Syntax of the terms to be inserted in the file fvSchemes to set the Crank-Nicolson

scheme

scheme, coinciding with the Crank-Nicolson scheme. The syntax of the terms to be

inserted in the fvSchemes file is shown in Fig. 6.2. By setting the value of .ψ to

zero, the Euler scheme (stable but not very accurate) is obtained. By setting .ψ equal

to 1, the pure Crank-Nicolson scheme (very accurate but less stable and with possible

non-physical oscillations in the results) is obtained. In most cases, .ψ = 0.7 ÷ 0.9 is

set to achieve a good compromise between stability and accuracy. The word “default”

indicates that all the time derivative terms present in the treated equations will be

discretised using the scheme specified on the same line after this word. In the case

of non-stationary simulations, the word bounded must not appear in any of the

schemes for the discretisation of the convective terms (divSchemes).

6.1.2 Discretisation Schemes of the Convective Terms

The source code of the discretisation schemes for the convective terms is contained

in the folder WM_PROJECT_DIR/src/finiteVolume/interpolation/

surfaceInterpolation. The most frequently used schemes are:

• upwind, first-order accurate;

• linear, second-order accurate but with the possibility of producing non-physical

over- or under-estimates;

• limitedLinear, this scheme requires specifying a number between 0 and 1 next to

the word limitedLinear:

– if the number is equal to 0, the interface value is calculated using the linear

scheme for all cells in the domain;

– if the number is equal to 1, the scheme with a flow limiter is used (see

Sect. 3.1.7) with .ψ(r) = min(2r, 1);

– if the number is between 0 and 1, each cell will have an intermediate value

between those obtained for the two extreme values;

• limitedLinearV, in the case of vector fields, instead of calculating a limiter value

for each component of the vector field, a single limiter value is applied to all

components, choosing the one related to the component exhibiting the highest

gradient value. This increases stability (by eliminating possible wiggles) at the

expense of accuracy;

• linearUpwind, second-order accurate and without non-physical over- or under-

estimates;

6.1 Discretisation Schemes 191

• linearUpwindV, in the case of vector fields, the greatest of the gradients of the

vector components is used as the gradient for the linear corrective term;

• Minmod, second-order accurate TVD scheme without non-physical over- or

under-estimates;

• vanLeer, second-order accurate TVD scheme without non-physical over- or

under-estimates;

• LUST (Linear Upwind STabilised), blended scheme: 75% linear and 25%

linearUpwind.

Recalling what was already seen in Sect. 3.1.7, schemes with flux limiters aim to

optimise the blending factor (the flux limiter) .ψ between the value of the quantity . φ

on the face obtained with the simple upwind scheme and the same value obtained by

applying the centred scheme:

. φ f = [1 − ψ(r)]φU W + ψ(r)φL I

in which it can be noted that (i) for .ψ = 0 the upwind scheme is obtained, (ii) for

.ψ = 1 the centred scheme is obtained, (iii) the limiter .ψ is a function of the ratio

. r between the value of the gradient .∇φ of the quantity . φ at the upwind cell centre

and the value of the component .∇nφ f normal to the face of the gradient of the same

quantity at the centroid of the considered face. In the case where. φ is a scalar quantity,

the ratio . r is calculated in OpenFOAM® as

. r = max

[

2
�d · ∇φ

|�d|∇nφ f

− 1, 0

]

where.�d is the vector connecting the centres of the two cells that share the considered

face.

In the case where. φ is a vector quantity, it is possible to use the schemes indicated as

limitedLinearV, linearUpwindV, etc. In these cases, the ratio. r is calculated

in OpenFOAM® as

. r = 2
∇nφ f · �d · ∇φ

|�d|∇nφ f · ∇nφ f

− 1.

Various expressions exist for the flux limiter function. Here is the implementation in

OpenFOAM® for some of them:

• .ψ(r) = min(2r, 1) for the limited linear scheme;

• .ψ(r) = min(r, 1) for the minmod scheme;

• .ψ(r) =
r + |r |

1 + |r |
for the van Leer scheme;

• .ψ(r) =
r2 + r

1 + r2
for the van Albada scheme.

In the case where LUST or linearUpwind schemes (see Sects. 3.1.4 and 3.1.5) are

used, it is necessary to know the value of the gradient of. φ at the cell centre because, in

192 6 OpenFOAM®

the case of linearUpwind, the value of the quantity considered at the face is calculated

as (Figs. 6.3 and 6.4)

.

{

φ f = φP + ∇φP · r f or (u · n) f ≥ 0,

φ f = φN + ∇φN · r f or (u · n) f < 0

where . r is the cell centre-to-face centre distance vector. It is clear the necessity to

specify the way in which this gradient (for example, the velocity gradient grad(U))

is calculated. As indicated in Fig. 6.5, the gradient calculation setting can be done

explicitly or implicitly by inserting the word default instead of grad(U) in the

Section gradSchemes and removing grad(U) in the Section divSchemes. It should

be noted that in this second case, the gradient of all quantities will be calculated in

the same way. To differentiate the way in which the gradient is calculated based on

the quantity considered, it is possible to proceed as done in Fig. 6.1, in which the

method to calculate the gradient of the pressure is specified separately from that used

for all other quantities.

Still, in the case where LUST or linearUpwind schemes are used, the value of the

gradient, calculated as specified in Section gradSchemes, can lead to unacceptable

Fig. 6.3 Value of .φ f for

. (u · n) f ≥ 0

Fig. 6.4 Value of .φ f for

.(u · n) f < 0

6.1 Discretisation Schemes 193

Fig. 6.5 Explicit setting of

the gradient calculation

method of velocity

Fig. 6.6 Calculation of . φ on

the face

values of the considered quantity at the faces of the generic cell. For simplicity, and

with reference to Fig. 6.6, a one-dimensional grid is considered. In this case, the

gradient is indicated by the slope of the line representative of the variation of . φ.

If the cell-based strategy (i.e., linear interpolation, see Sect. 3.4) is adopted to

calculate the value of the gradient in cell . i , one should consider the value of . φ at the

centres of the two cells .i − 1 and .i + 1 to calculate the values .φl and .φr respectively.

.φl and .φr are the values of the quantity at the two faces that delimit the cell. The two

values thus obtained determine the value of the gradient (i.e., the inclination of the

two dashed and parallel segments in Fig. 6.6) at the centre of the cell. This gradient

value is used for the subsequent calculation of the face values of the quantity . φ when

discretising the convective fluxes (Section divSchemes).

It is evident from Fig. 6.6 that .φi−1 and .φi+1 are the values of . φ at the centres of

the two cells adjacent to the one considered. Considering the interval on the ordinate

axis between .φi−1 and .φi+1, the application of this gradient calculation procedure

can lead to values of . φ on the faces outside this interval. In Fig. 6.6, the value .φl is

lower than .φi−1.

This phenomenon is known as the “unboundedness” of the scheme. Such a phe-

nomenon can make the entire simulation process unstable. If, for example, one con-

siders the turbulent viscosity calculation, the correctness of the velocity gradient

is fundamental: excessive values would lead to an incorrect increase in viscosity,

which in turn would artificially raise the value of the velocity gradient, triggering a

self-feeding process that could lead to the destabilisation of the entire simulation.

To avoid the occurrence of such situations, the so-called “gradient limiters” (see

194 6 OpenFOAM®

Sect. 6.1.3) are used. Thanks to gradient limiters, the gradient is modified to ensure

that the value of . φ on the faces (the left face of the cell . i in the case of Fig. 6.6) is

not outside the range of values determined by the cells close to the one considered

(in the case of Fig. 6.6, .φl < φi−1 is avoided).

In the divergence schemes area of the file fvSchemes (for historical rea-

sons), advective or transport terms of quantities other than velocity appear.

Figure 6.15 presents the example of the advection scheme setting for turbulence-

related quantities such as . k and . ω. In this area, some very specific terms of a non-

precisely advective type also appear. For example, one can observe the diffusive term

in the last line of the divSchemes area of Fig. 6.15:

div((nuEff*dev2(T(grad(U))))) Gauss Linear;

in which explicit reference is made to turbulent kinematic viscosity with the term

nuEff. This diffusive term requires a type of discretisation different from the one

used for advective terms. The heterogeneity of the nature of the terms present in this

area requires that, unlike other areas, the word “none” must be used to explicitly state

the chosen scheme for each term.

It is finally noted that, in the case of non-stationary simulations, none of the

chosen schemes should include the word bounded. Normally, convective terms

are identified by terms that begin with div(phi,…), in which phi generally

indicates

• the volumetric flux through the faces of cells for incompressible cases;

• the mass flux for compressible calculations.

As an example, div(phi,U) indicates the advection term of velocity,

div(phi,e) the advection term of internal energy, and so on.

Schemes such as linearUpwindV or limitedLinearV differ from the cor-

responding versions for scalar fields in that the only limiting factor value for all com-

ponents is calculated based on the component that presents the highest gradients.

Consequently, this scheme is more stable, although less accurate.

The bounded version of the schemes for the discretisation of convective terms

refers to the treatment of the material derivative, which can be expressed in terms of

the time derivative and advection. In the case of internal energy . e, it is:

.

De

Dt
=

∂e

∂t
+ U · ∇e =

∂e

∂t
+ ∇ · (Ue) − (∇ · U) e.

For incompressible cases, the bounded version is used to improve convergence

and maintain the boundedness of the scheme, including the term .(∇ · U) e, which

becomes null once convergence is reached.

6.1.3 Gradient Discretisation Schemes

The available cell centre gradient calculation methods are:

6.1 Discretisation Schemes 195

Fig. 6.7 Setting for the

calculation of the velocity

gradient at the centroid of the

cell using the Gauss method

and the cell based approach

to calculate the velocity at

the centroid of the faces

• edgeCellsLeastSquares;

• fourth;

• Gauss;

• leastSquares;

• pointCellsLeastSquares.

The source code for these schemes—all accurate to the second order—is contained

in the folder WM_PROJECT_DIR/src/finiteVolume/finiteVolume/

gradSchemes. For some gradient calculation methods, it is necessary to spec-

ify the strategy used to obtain the value of the quantity at the centroid of the generic

face. Considering, for example, the Gauss method for calculating the velocity gra-

dient, it is necessary to specify whether to use the cell- or node-based approach

(see Sect. 3.4) to calculate the velocity at the centroid of the faces of the cell. If

the cell-based strategy is chosen, the word linearmust be specified (see Fig. 6.7);

if the node-based method is chosen, the word pointLinear should be specified

instead of linear. In Fig. 6.7, the gradient of the referred quantity is specified first,

followed by the method for calculating the gradient at the centroid of the cell. The

final word specifies the method for calculating the quantity at the centroid of the

face. There are gradient calculation schemes for which it is possible to use a limiter.

In ascending order of numerical diffusivity, they are:

• cellMDLimited;

• cellLimited;

• faceMDLimited;

• faceLimited.

The cell* type limiters restrict the value of the gradient in its component along

the direction identified by two adjacent cell centres. The limiters of the face* type

restrict the value of the gradient in its component along the direction identified by

the face and the cell centroid. The multidimensional limiters (cellMDLimited and

faceMDLimited) restrict the value of the gradient only along the direction normal

to the face considered. The other limiters restrict all components of the gradient, not

just the one along the normal to the face direction. The limiter used by default is

minmod, but if the cellLimited option is used, it is possible to use two other limiters:

cubic and Venkatakrishnan. For these two, the syntax to use is.cellLimited<cubic>

196 6 OpenFOAM®

Fig. 6.8 Syntax for the

definition of gradient

calculation

and.cellLimited<Venkatakrishnan>, respectively. In OpenFOAM®, the implemen-

tation of limiters involves the use of a blending factor . ψ , as shown in Fig. 6.8. This

coefficient can vary between 0 and 1. By setting this coefficient to 0, the limiter

is disabled; by setting it equal to 1, it is enabled. Intermediate values will result in

a weighted average of the two extreme cases. The most commonly used gradient

discretisation schemes are Gauss, which involves the use of interpolation, and least-

Squares, which does not involve interpolation. The most commonly used limiter

schemes are cellLimited and cellMDLimited. Except in special cases, these lim-

iters are applied only to certain quantities, including velocity and quantities related to

the modelling of turbulence (.k, ǫ, ω), in order to avoid results affected by excessive

numerical dissipation and excessively high residual values.

6.1.4 Discretisation Schemes of Laplacian or Diffusive Terms

The available schemes for calculating the component of the gradient normal to the

face, in the context of the discretisation of Laplacian terms (see Sect. 3.3), are:

• corrected;

• faceCorrected;

• limited;

• linearFit;

• orthogonal;

• quadraticFit;

• uncorrected.

The source code for these schemes is contained in the folder WM_PROJECT_DIR/

src/finiteVolume/finiteVolume/snGradSchemes. The choice of

scheme depends on the geometric characteristics of the computational grid. Fig-

ures 6.9, 6.10, 6.11, and 6.12 show some possible types of grid. The most frequently

used schemes are:

• orthogonal: used in the case of perfectly orthogonal, non-deformed hexagonal

grids (see Fig. 6.9). This scheme is second-order accurate. It does not include

6.1 Discretisation Schemes 197

Fig. 6.9 Orthogonal grid:

orthogonal schemes should

be used

Fig. 6.10 Stretched

orthogonal grid: corrected

or limited with . ψ = 1

schemes should be used

198 6 OpenFOAM®

Fig. 6.11 Deformed grid

with medium/low degree of

non-orthogonality: limited

with .ψ = 1 or . ψ = 0.5

scheme should be used

Fig. 6.12 Unstructured grid:

limited with . ψ = 0.5

scheme should be used

6.1 Discretisation Schemes 199

corrections for non-orthogonality. Definition (3.37) is rewritten here for the sake

of convenience.

. S · (∇φ) f = |S|
φN − φP

|d|
;

• uncorrected: used in the case of non-deformed hexagonal grids with low non-

orthogonality (see Fig. 6.10), this scheme is second-order accurate. It does not

include corrections for non-orthogonality. Definition (3.39) is used, truncated of

the corrective term for non-orthogonality:

. S · (∇φ) f = |�|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal contribution

where the term .� is calculated according to the over-relaxed method (see Sect.

3.3);

• corrected: used in the case of grids (see Fig. 6.11) with high non-orthogonality,

this scheme is second-order accurate and applies corrections for non-orthogonality

(see Sect. 3.3). Definition (3.39) is rewritten here for the sake of simplicity.

. S · (∇φ) f = |�|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal contribution

+

non orthogonal contribution
︷ ︸︸ ︷

k · (∇φ) f ;

• limited: derived from the corrected scheme, this scheme provides the blending

factor. ψ , which limits the weight of the non-orthogonal contribution to a fraction of

the orthogonal one. Highly non-orthogonal grids produce coefficient matrices with

scarce diagonal dominance. When dealing with grids with high non-orthogonality

(see Fig. 6.12), this approach prevents divergence of the solution process due to

excessively high values of the non-orthogonal contribution. Some considerations

regarding the blending factor .ψ follow.

– By setting .ψ = 0 (no limitation), the uncorrected scheme is obtained. This

option ensures greater stability but lower accuracy;

– By setting .ψ = 1
3

= 0.333, the contribution of the orthogonal part will be . 1 −
1
3

= 2
3

= 0.666, and the ratio (blending factor)/(orthogonal part) will be equal

to . 1
2

= 0.5. Therefore, the correction cannot exceed .50% of the value of the

orthogonal part;

– By setting.ψ = 1
2

= 0.5, the contribution of the orthogonal part will be. 1 − 1
2

=
1
2

= 0.5, and the ratio (blending factor)/(orthogonal part) will be equal to.
1
1

= 1.

Therefore, the correction cannot exceed .100% of the value of the orthogonal

part;

– By setting .ψ = 1, the corrected scheme is obtained, which ensures greater

accuracy but lower stability.

200 6 OpenFOAM®

Fig. 6.13 Syntax for

defining of the scheme

limited

In general, for grids with non-orthogonality less than .70◦, .ψ = 1 can be set (no

limitation). For a non-orthogonality factor between .70◦ and .80◦, .ψ = 0.5 can

be set, simultaneously increasing the number of non-orthogonal corrections (see

further on). For a non-orthogonality factor greater than .80◦, .ψ = 0.33 can be set,

increasing the number of non-orthogonal corrections (see further on). Grids with

a non-orthogonality factor greater than .85◦ should be discarded due to insufficient

quality. The syntax to use in the case of the limited scheme is indicated in Fig. 6.13,

where the word Gauss indicates that the Gauss theorem is being used to switch

from volume to surface integrals. The word Gauss is the only option in the case

of discretisation of Laplacian terms. The presence of this word responds to code

implementation needs. The word linear indicates the interpolation method used

to calculate the value .Ŵ f of the diffusion coefficient on the face based on that at

the cell centre.

The available interpolation methods for the diffusion coefficient are:

• cubic;

• harmonic;

• linear;

• midPoint;

• pointLinear;

• reverseLinear.

The one used in most cases is linear. As for the terms related to the snGradSchemes

entry, the same value inserted for the laplacianSchemes entry is normally used, as

shown in Fig. 6.14.

Fig. 6.14 Syntax for

defining the scheme for the

normal-to-the-face

component of gradient

snGradSchemes
{
 default limited 1.0;
}

laplacianSchemes
{
 default Gauss linear limited 1.0;
}

6.2 Examples of Discretisation Scheme Settings 201

6.2 Examples of Discretisation Scheme Settings

Below are some examples of settings for the file fvSchemes.

6.2.1 Generic Setting

These settings (see Fig. 6.15) are valid in most cases and are very similar to those

preset in commercial solvers. They are second order accurate, and depending on the

quality of the grid, it may be necessary to reduce the value of the blending factor

related to the laplacianSchemes and snGradSchemes entries. If turbulent quantities

(i.e.. k and. ω) assume unacceptable values, it is advisable to change the corresponding

entry in divSchemes from linearUpwind to upwind, thus lowering the order of

accuracy from second to first for these quantities. To keep the simulation stable

and accurate over time, the value of the CFL (in the file controlDict) should

be less than 2 for implicit solvers. As for the calculation of the gradient, although

the leastSquares method is generally more accurate, non-physical oscillations may

occur in the presence of tetrahedral grids because the leastSquares method is not

conservative.

Fig. 6.15 General settings ddtSchemes
{
 default CrankNicolson 0;
}

gradSchemes
{
 default cellLimited Gauss linear 0.5;
 grad(U) cellLimited Gauss linear 1.0;
}

divSchemes
{
 default none;
 div(phi,U) Gauss linearUpwindV grad(U);
 div(phi,omega) Gauss linearUpwind default;
 div(phi,k) Gauss linearUpwind default;
 div(nuEff*dev(T(grad(U))) Gauss linear;
}

laplacianSchemes
{
 default Gauss linear limited 1.0;
}

interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default limited 1;
}

202 6 OpenFOAM®

6.2.2 Accurate Setting

Figure 6.16 shows settings that make the calculation very accurate, and therefore

more exposed to the risk of non-physical oscillations. These settings can be used for

high-quality grids (low skewness and non-orthogonality) and for LES (Large Eddy

Simulation) or RANS (Reynolds Averaged Navier–Stokes) simulations involving

not too complex physical phenomena. To mitigate the effects of low-quality grids,

lower values of the blending factor for laplacianSchemes and snGradSchemes can

be used.

6.2.3 Stable Setting

Figure 6.17 shows settings that make the calculation very stable, more diffusive, and

therefore less accurate (see also Fig. 3.17). These settings can be used for grids with

poor quality (high skewness and non-orthogonality) and for simulations involving

strong discontinuities or in cases of divergence in the calculations, leading to an

unexpected interruption of the solution process. To mitigate the effects of low-quality

grids, one can lower the values of the blending factor for laplacianSchemes and

snGradSchemes. This type of setting is also used to perform a limited number of

initial iterations, followed by the necessary number of iterations to reach convergence

with settings that make the calculation more accurate.

6.3 Linear Solvers

The solvers for linear systems available in OpenFOAM® are:

• PCG (Preconditioned Conjugate Gradient): a solver based on the precondi-

tioned gradient method, suitable for symmetric coefficient matrices;

• PBiCGStab (Preconditioned Bi-conjugate Gradient Stabilised): a solver based

on the preconditioned bi-conjugate gradient method, stabilised for both symmetric

and asymmetric coefficient matrices;

• PBiCG (Preconditioned Bi-conjugate Gradient): a solver based on the pre-

conditioned bi-conjugate gradient method, valid for asymmetric coefficient

matrices;

• smoothSolver: a solver that requires the specification of a smoother;

• GAMG (Geometric-Algebraic Multi-Grid): a multi-grid solver;

• diagonal: a diagonal solver valid for both symmetric and asymmetric coefficient

matrices.

6.3 Linear Solvers 203

The symmetry of the coefficient matrix depends on the terms of the equation being

considered: time discretisation and Laplacian/diffusive terms introduce symmet-

ric elements, whereas the discretisation of advective terms introduces asymmetric

elements. The preconditioners (see also Sect. 4.6.1) available in OpenFOAM® are:

• diagonal: preconditioner valid for symmetric and asymmetric coefficient matrices;

• DIC (Diagonal Incomplete Cholesky preconditioner): preconditioner valid for

symmetric coefficient matrices;

• DILU (Diagonal Incomplete LU preconditioner): preconditioner valid for asym-

metric coefficient matrices;

• FDIC (Fast Diagonal Incomplete Cholesky preconditioner): preconditioner valid

for symmetric coefficient matrices;

• GAMG (Geometric Algebraic MultiGrid preconditioner): preconditioner valid for

symmetric and asymmetric coefficient matrices. In this case, the GAMG method

is used as a preconditioner.

Finally, in the case where a smoother needs to be specified for the chosen solver, the

options available in OpenFOAM® are:

• GaussSeidel: the Gauss-Seidel method is applied to symmetric and asymmetric

coefficients matrices;

Fig. 6.16 Settings for

accurate but unstable

calculation

laplacianSchemes
{
 default Gauss linear limited 1.0;
}

interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default limited 1;
}

ddtSchemes
{
 default CrankNicolson 0.7;
}

gradSchemes
{
 default leastSquares;
}

divSchemes
{
 default none;
 div(phi,U) Gauss linear;
 div(phi,omega) Gauss linear;
 div(phi,k) Gauss linear;
 div(nuEff*dev(T(grad(U))) Gauss linear;
}

204 6 OpenFOAM®

Fig. 6.17 Settings for less

accurate (diffusive) but

stable calculation

interpolationSchemes
{
 default linear;
}

ddtSchemes
{
 default Euler;
}

gradSchemes
{
 default cellLimited Gauss linear 1.0;
}

divSchemes
{
 default none;
 div(phi,U) Gauss upwind;
 div(phi,omega) Gauss upwind;
 div(phi,k) Gauss upwind;
 div(nuEff*dev(T(grad(U))) Gauss linear;
}

laplacianSchemes
{
 default Gauss linear limited 0.5;
}

snGradSchemes
{
 default limited 0.5;
}

• symGaussSeidel: the Gauss-Seidel method is applied to symmetric coefficients

matrices;

• DIC: in the case of symmetric matrices, the Diagonal Incomplete-Cholesky method

is applied;

• DILU: in the case of non-symmetric matrices, the Diagonal Incomplete-LU

method is applied;

• DICGaussSeidel: in this case, if the matrices are symmetric, an iteration performed

with the DIC method is followed by an iteration with the Gauss-Seidel method

that eliminates any high-frequency errors resulting from the iteration performed

with the DIC method; if the matrices are non-symmetric, an iteration performed

with the DILU method is followed by an iteration with the Gauss-Seidel method,

which eliminates any high-frequency errors resulting from the iteration performed

with the DILU method.

A smoother is a solver for systems of equations whose application eliminates high-

frequency errors. It is applied to the system of equations before the actual solver, and

the number of times it is applied is equal to the value set for the optional parameter

nSweeps, with a default value of 1.

6.3 Linear Solvers 205

6.3.1 Geometric-Algebraic Multi-grid (GAMG)

As mentioned in Sect. 4.7.4, this algorithm begins with the assembly phase of the

grids that will be used in the subsequent phases. In OpenFOAM®, the strategy for

generating the coarser grids is specified by the parameter agglomerator. If the

values of the elements of the coefficients matrix are used to perform the agglom-

eration phase, the value to set for agglomerator is algebraicPair. If the

chosen strategy for merging the cells of the grid is based on geometric parame-

ters, the value to set for agglomerator is faceAreaPair. This latter setting

is considered more efficient than the former. The final option is MGridGen, which

allows the use of the MGridGen library to perform the agglomeration process based

on geometric considerations. In this case, it will be necessary to add the follow-

ing line to the controlDict file: geometricGamgAgglomerationLibs

(“libMGridGenGamgAgglomeration.so”). Other settings related to the

agglomeration process are as follows.

• nCellsInCoarsestLevel: This parameter sets the total number of cells for

the coarsest grid used in the multigrid process. The default value is 10.

• directSolveCoarsest: This parameter specifies whether to use a direct

method to solve the linear system associated with the coarsest grid in the multigrid

process. The default value is false.

• mergeLevels: This parameter controls the number of grids used in the multigrid

process by selectively excluding some of the grids generated during the agglom-

eration phase. By setting this parameter to 2, only half of the generated grids will

be used in the process. In most cases, this parameter is set to 1, and the value 2 is

used only in the case of very simple starting grids.

It is possible to set the solver (smoother) used to solve the linear systems associated

with the various grid levels through the parameter smoother. The possible values

for this parameter are:

• GaussSeidel: this method applies the Gauss-Seidel approach to matrices that

do not have zero values on the main diagonal. It guarantees convergence only for

diagonal-dominant matrices that are symmetric and positive definite;

• symGaussSeidel: this method applies the Gauss-Seidel approach specifically

to symmetric coefficient matrices;

• DIC/DILU: the method of incomplete diagonal decomposition (DIC) is applied

to symmetric matrices, while the method of incomplete LU decomposition (DILU)

is used for non-symmetric matrices;

• DICGaussSeidel: for symmetric matrices, an iteration performed with the

DIC method is followed by an iteration with the Gauss-Seidel method to eliminate

high-frequency errors caused by the DIC iteration. For non-symmetric matrices, an

iteration with the DILU method is followed by an iteration with the Gauss-Seidel

method to eliminate high-frequency errors resulting from the DILU iteration.

206 6 OpenFOAM®

The number of iterations to be performed using the chosen smoother is determined

by the value of the following optional parameters:

• nPreSweeps: number of iterations to be performed on the grids during the

coarsening phase (default 0);

• nPostSweeps: number of iterations to be performed on the grids during the

refining phase (default 2);

• nFinestSweeps: number of iterations to be performed on the finest grid.

6.4 Pressure-Velocity Coupling

The projection methods implemented in OpenFOAM® are:

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations);

• SIMPLEC (SIMPLE Corrected/Consistent);

• PISO (Pressure Implicit with Splitting Operators);

• PIMPLE (hybrid between SIMPLE and PISO).

The SIMPLE and SIMPLEC methods are implemented for steady-state simulations,

while PISO and PIMPLE are implemented for transient simulations.

6.4.1 Implementation of SIMPLE and PISO in OpenFOAM®

As previously mentioned, in the continuity equation for incompressible flows,

.∇ · U = 0 (6.4)

the pressure term is not present. Therefore, in this case, it is impossible to link the

continuity equation with the conservation of momentum Eq. 2.43 here reported in

vector form:

.

∂U

∂t
+ ∇ · (UU) − ν∇2U = −∇ p (6.5)

whose three components are

.

∂Ux

∂t
+ ∇ · (UUx) − ν∇2Ux = −

∂p

∂x
, (6.6)

.

∂Uy

∂t
+ ∇ · (UUy) − ν∇2Uy = −

∂p

∂y
, (6.7)

6.4 Pressure-Velocity Coupling 207

.

∂Uz

∂t
+ ∇ · (UUz) − ν∇2Uz = −

∂p

∂z
. (6.8)

. U is the fluid velocity, while.Ux (or.Uy or.Uz) is the transported quantity (the. φ of Eq.

2.38). It should be noted that here the pressure refers to the kinematic pressure, .p/ρ.

. ν is the kinematic viscosity, which is related to dynamic viscosity by the relation. ν =

μ/ρ. Equations 6.6, 6.7, and 6.8 can each be applied to every cell of the computational

domain, resulting in the following matrix equations.

.MxUx = bx , (6.9)

. MyUy = by,

. MzUz = bz

where .Mx , .My , and .Mz are the coefficient matrices; .Ux , .Uy , and .Uz are the column

matrices containing the considered component of the velocity corresponding to each

of the .N cells of the computational domain; . bx , . by , and .bz are the column matrices

containing the considered component of the pressure gradient corresponding to each

of the .N cells of the computational domain. Considering only the x component of

the velocity, Eq. 6.9 is

.

⎡

⎢
⎢
⎢
⎣

M11 M12 . . . M1N

M21 M22 . . . M2N

...
... . . .

...

MN1 MN2 . . . MN N

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Ux1

Ux2

...

Ux N

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

(∂p/∂x)1
(∂p/∂x)2

...

(∂p/∂x)N

⎤

⎥
⎥
⎥
⎦

where the terms .Mi j of the coefficient matrix are known.

It is important to note that the discretisation of the various terms of Eq. 6.5 con-

tributes to determining the value of the elements .Mi j of the coefficient matrix. For

simplicity, we will refer only to the component .Ux of the velocity from now on. As

seen in Sect. 3, for the discretisation of the convective term, we can refer to Eq. 3.2.

If the transported quantity is .Ux , Eq. 3.2 becomes

.

∮

∂VP

dS · (ρUUx) ≈
∑

f

S f · (ρUUx) f =
∑

f

S f · ρ f U f (Ux) f =
∑

f

φ f (Ux) f

(6.10)

where the mass flow rate .φ f = S f · ρ f U f becomes a volumetric flow rate, . φ f =

S f · U f , in the case of incompressible flow, where the density . ρ is absent.

For the discretisation of the diffusive term, we refer to Eq. 3.3, which, when the

diffused quantity is .Ux , becomes:

..

∮

∂VP

dS · (ρν∇Ux) ≈
∑

f

S f · (ρν∇Ux) f =
∑

f

S f ρ f ν f ∇n(Ux) f

208 6 OpenFOAM®

.S f denotes the magnitude of the vector .S f , and the term .∇n(Ux) f is the normal

component of the gradient of .Ux at the centre of the face . f . Considering that

• .∇ · ∇2U ≡ ∇ · (∇ · ∇U) ≡ ∇2 (∇ · U);

• the kinematic viscosity is considered constant;

• the semi-discretised form (i.e., discretised only with respect to time) of the

momentum Eq. 6.5 is used;

• the continuity Eq. 6.4 must be satisfied.

A new equation can be written when calculating the divergence of the momentum

Eq. 6.5. In this new equation, the pressure term appears:

.

✚
✚

✚✚
∇ ·

∂U

∂t
+ ∇ · (∇ · (UU)) −✘✘✘✘✘

∇ ·
(

ν∇2U
)

= −∇2 p

that is

.∇2 p + ∇ · [∇ · (UU)] = 0 (6.11)

known as the Poisson pressure equation (see also Sect. 1.3.5).

The Poisson equation can be better understood by noting that the symbol . UU

represents a second-order tensor:

. UU =

⎡

⎣

UxUx UxUy UxUz

UyUx UyUy UyUz

UzUx UzUy UzUz

⎤

⎦ .

Note that, since the transport term .∇ · (UU) is present in the Poisson pressure equa-

tion, its discretisation necessarily leads to the calculation of the flux .φ f , as seen

for the same term in the discretised form of the momentum equation. The system

composed of Eqs. 6.5 and 6.11 is equivalent to the system of the Navier-Stokes equa-

tions in their incompressible formulation and can be solved by imposing appropriate

boundary and initial conditions. Specifically, by setting an initial pressure field, a

velocity field can be calculated through Eq. 6.5 (momentum predictor step), which

has a non-zero divergence. Through Eq. 6.11, this velocity field can be used to calcu-

late a new pressure field (pressure corrector step). The pressure field thus obtained is

used to “correct” the velocity field (momentum corrector step) and update the values

of the fluxes .φ f and the coefficients of matrices .Mx , .My , and .Mz . This sequence

is executed iteratively until a velocity field with zero divergence is reached, that is,

until the continuity equation is satisfied with an acceptable error. This procedure is

also known as pressure-velocity coupling (see also Chap. 5).

It is now necessary to describe the notation underlying the implementation of the

SIMPLE algorithm. The terms on the left-hand side of Eq. 6.5 can be represented as

follows:

.

∂U

∂t
+ ∇ · (UU) − ν∇2U ≡ AU − H(U)

6.4 Pressure-Velocity Coupling 209

in which .A is a constant and .H(U) is a vector which depends on . U and any source

term not considered here for simplicity. Considering the three components of the

velocity, it is

.. AUx − Hx (U) ≡
∂Ux

∂t
+ ∇ · (UUx) − ν∇2Ux ,

.. AUy − Hy(U) ≡
∂Uy

∂t
+ ∇ · (UUy) − ν∇2Uy,

.. AUz − Hz(U) ≡
∂Uz

∂t
+ ∇ · (UUz) − ν∇2Uz

in which .Hx (U), .Hy(U), and .Hz(U) are the three components of the vector .H(U).

The momentum conservation Eq. 6.5 can now be written as

.AU − H(U) = −∇ p (6.12)

and, considering the three components of the velocity,

. AUx − Hx (U) = −
∂p

∂x
,

AUy − Hy(U) = −
∂p

∂y
, (6.13)

AUz − Hz(U) = −
∂ p

∂ z
.

Applying each of Eq. 6.13 to all cells of the computational domain, three matrix

equations are obtained:

.. AxUx − Hx (U) = bx ,

AyUy − Hy(U) = by,

AzUz − Hz(U) = bz

in which.Ax ,.Ay , and.Az are diagonal matrices whose terms are the diagonal elements

(constants) of the coefficient matrices .Mx , .My , and .Mz , respectively. .Ux , .Uy , and

.Uz are column matrices containing the corresponding velocity components for each

cell of the computational domain..Hx (U),.Hy(U), and.Hz(U) are matrices containing

the corresponding components of the vector .H(U) for each cell of the computational

domain.. bx ,. by , and.bz are column matrices containing the corresponding components

of the pressure gradient for each of the .N cells of the computational domain.

Equation 6.12 can now be rewritten as

.U =
H(U)

A
−

1

A
∇ p (6.14)

210 6 OpenFOAM®

and, applying the three component equations of this vector equation to all the cells

of the computational domain, three matrix equations are obtained:

. Ux =
Hx (U)

Ax

+
1

Ax

bx ,

Uy =
Hy(U)

Ay

+
1

Ay

by, (6.15)

Uz =
Hz(U)

Az

+
1

Az

bz

where . bx , . by , and .bz are still the column matrices containing the considered com-

ponents of the pressure gradient corresponding to each of the .N cells of the com-

putational domain. Equation 6.15 has been written in this way to reflect the imple-

mentation in OpenFOAM® programming language. Nevertheless, Eq. 6.15 has been

written in this way to highlight the fact that the calculation of the terms .
1

Ax

, .
1

Ay

, and

.

1

Az

is very simple, since the inverse of a diagonal matrix is a diagonal matrix whose

elements are each the inverse of the corresponding elements of the initial matrix.

Referring only to the component in the x direction, it is

.

1

Ax

= A−1
x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

M11

0 . . . 0 0

0
1

M22

. . . 0 0

...
... . . .

...
...

0 0 . . . 0
1

MN N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x

.

Referring to (6.14) and noting the definition .φ f = S f · U f of volumetric flow rate

at the interface, we can write

.φ f = S f ·

(
H(U)

A

)

f

−

(
S f

A

)

f

∇n p f . (6.16)

Referring to Eq. 6.14 and noting the definition .∇ · U = 0 of the mass conservation

equation, the Poisson pressure equation can be written as

. ∇ ·
1

A
∇ p = ∇ ·

[
H(U)

A

]

.

Given that a Laplacian is present in the pressure equation, as occurs in the discretisa-

tion of diffusive terms, the presence of non-orthogonal grids results in the additional

term . f (∇ p):

6.4 Pressure-Velocity Coupling 211

.∇ ·
1

A
∇ p = ∇ ·

[
H(U)

A

]

+ f (∇ p) . (6.17)

Skewness and non-orthogonality of cells imply secondary gradients in every equa-

tion where diffusive phenomena are considered. Noting that the non-orthogonal cor-

rection term (see Sect. 3.3) is solved as a source term and therefore explicitly, the

values of pressure used to calculate the term . f (∇ p) are always those obtained at the

actual iteration. To reduce the errors due to secondary gradients, the pressure value

just obtained from the pressure correction equation is substituted back into the same

equation, as shown in Figs. 6.21, 6.22, and 6.24, where the non-orthogonal correc-

tors decision block is used to obtain a new and more accurate value of the pressure

field. By doing so, accuracy and stability are improved at the expense of a significant

increase in computational cost. In OpenFOAM®, the SIMPLE algorithm is imple-

mented for steady-state calculations only. For non-steady-state calculations, the PISO

or PIMPLE algorithms are used. The control parameters of the SIMPLE cycle are

contained in the fvOptions file. The number of executions of the non-orthogonal

correction cycle is set through the word nonOrthogonalCorrectors present in the

SIMPLE section of the fvOptions file. When dealing with orthogonal grids, this

value can be set to zero; otherwise, it cannot be less than 1 and may increase depend-

ing on the quality of the grid. When there is at least one non-orthogonal correction,

the cycle is called SIMPLEC.

6.4.1.1 Field and Equation Under-Relaxation

The use of under-relaxation factors is typical of SIMPLE-type steady-state solvers.

As shown in Fig. 6.19, it is possible to distinguish the application of such fac-

tors to a specific quantity (“fields”) from their application to a matrix equation

(“equations”). In the case of applying them to a generic quantity (for example,

pressure), these factors are used to control the rate of change of the quantity between

one iteration and the next (Fig. 6.18):

. φn
P = φn−1

P + α
(

φn∗

P − φn−1
P

)

where .φn
P is the final value of the quantity at iteration . n in the cell centred at P,

.φn−1
P is the value of the quantity at iteration .n − 1, and .φn∗

P is the value of the

quantity at iteration . n before the application of the under-relaxation factor . α. The

values that this factor can assume range between 0 and 1. High values imply greater

rapidity but less stability in the calculations, and vice versa. This approach to the

application of the under-relaxation factor is somewhat inefficient from a memory

usage perspective because it requires storing the value .φn∗

P in order to calculate .φn
P .

This method is known as field under-relaxation or explicit under-relaxation. It is

applied by specifying the quantity for which it is to be used in the “fields” section

of the relaxationFactors zone in the fvSolution file (see Fig. 6.19). For

212 6 OpenFOAM®

numerical reasons, this approach is required for pressure when using the SIMPLE

algorithm.

When under-relaxation factors are applied to a matrix equation, it is referred

to as equation under-relaxation or implicit under-relaxation. In this approach, the

coefficients matrix resulting from the discretisation of the equation (for example, the

conservation equation of the quantity of motion) for the considered quantity, applied

to all the cells of the computational domain, is modified. Indicating the elements of

the main diagonal of the coefficients matrix with the symbol .� and the remaining

elements with the symbol . ∗, it can be written:

.

⎡

⎢
⎢
⎣

� ∗ ∗

∗ � ∗

∗ � ∗

∗ ∗ �

⎤

⎥
⎥
⎦

[

φ
]

=

⎡

⎢
⎢
⎣

∗

∗

∗

∗

⎤

⎥
⎥
⎦

in which .
[

φ
]

is the column vector whose elements are the values of the quantity

. φ corresponding to all the cells of the computational domain. The under-relaxation

process involves modifying the elements of the main diagonal as follows:

.� = max (�, sum |∗|) /α (6.18)

in which the symbol .
∑

|∗| represents the sum of the absolute values of all the off-

diagonal elements in the row to which the element of the main diagonal belongs. It

can be noted that, as the value of . α decreases, the values of the elements of the main

diagonal increase, along with the diagonal dominance of the coefficients matrix, thus

making the inversion process more stable. Subsequently, an additional term is added

to the column vector of known terms, obtaining:

.

⎡

⎢
⎢
⎣

� ∗ ∗

∗ � ∗

∗ � ∗

∗ ∗ �

⎤

⎥
⎥
⎦

[

φ
]

=

⎡

⎢
⎢
⎣

∗

∗

∗

∗

⎤

⎥
⎥
⎦

+ [� − �]
[

φn−1
]

(6.19)

in which .
[

φn−1
]

is the column vector whose elements are the values of the quan-

tity .φ at the previous iteration. Due to the OpenFOAM® implementation of this

approach, when.α = 1, the elements of the main diagonal are still modified according

to Eqs. 6.18 and 6.19 to ensure the diagonal dominance of the coefficients matrix.

For non-stationary cases (PISO or PIMPLE algorithms), it is necessary:

• to delete all the rows in the fields section of the fvSolution file to avoid

incorrect results due to the variation of the elements of the main diagonal, which

have already been modified by the presence of elements related to the time

derivative (see Sect. 6.1.1);

6.4 Pressure-Velocity Coupling 213

Fig. 6.18 Application of the

under-relaxation factor . α

Fig. 6.19 Setting of the

under-relaxation factors in

the case of a solver based on

the SIMPLE algorithm

• to set the value of the under-relaxation factors for the quantities listed in

the equations section to 1, in order to ensure diagonal dominance. In the

relaxationFactors section of the fvOptions file, it is recommended

to have only a single row containing the text: ".*" 1; which sets the under-

relaxation value of all the quantities to 1, thus ensuring diagonal dominance without

under-relaxing (see Fig. 6.26).

An example of setting such factors in the fvSolution file for stationary cal-

culations with a solver based on the SIMPLE algorithm is shown in Fig. 6.19.

Figure 6.20 shows the setting of such factors in the case of a solver based on the

SIMPLEC algorithm. In this case, both field under-relaxation and equation under-

relaxation approaches have been activated. An example of setting such factors for

non-stationary calculations in the fvSolution file is shown in Fig. 6.26.

Figure 6.21 shows the SIMPLE algorithm in the form of a flowchart as imple-

mented in OpenFOAM®. The corresponding source code lines are also shown for

each block of the flowchart. Given an initial velocity field or one resulting from the

previous iteration, a “momentum matrix” is defined for each of the three components

214 6 OpenFOAM®

Fig. 6.20 Setting of the

under-relaxation factors in

the case of a solver based on

the SIMPLEC algorithm

relaxationFactors
{
 fields
 {

p 0.9;
 }
 equations
 {

p 1.0;
 U 0.7;
 k 0.7;
 omega 0.7;
 }
}

of the velocity, based on the discretised form of the momentum conservation Eq. 6.5,

excluding the pressure term.

. MxUx ≡ ∇ · (UUx) − ν∇2Ux ,

MyUy ≡ ∇ · (UUy) − ν∇2Uy,

MzUz ≡ ∇ · (UUz) − ν∇2Uz .

Subsequently, these matrices are under-relaxed. Given an initial pressure field or

one resulting from the previous iteration, the following matrix equations are solved

implicitly (momentum predictor step):

.MxUx = bx , (6.20)

MyUy = by,

MzUz = bz

in which. bx ,.by and.bz are the column matrices containing the considered component

of the pressure gradient in each of the.N cells of the computational domain. The result

is a velocity field . Uwith non-zero divergence. This velocity field allows defining the

term .H(U) present in the pressure Eq. 6.17, here reported for simplicity.

. ∇ ·
1

A
∇ p = ∇ ·

[
H(U)

A

]

+ f (∇ p)

which, solved implicitly, provides the new pressure field. The new pressure field can

be used to update the flow rates on the faces of the cells (flux corrector step) using

Eq. 6.16, here reported for simplicity.

.φ f = S f ·

(
H(U)

A

)

f

−

(
S f

A

)

f

∇n p f .

6.4 Pressure-Velocity Coupling 215

Fig. 6.21 SIMPLE predictor-corrector process with non-orthogonality correction cycle orthogo-

nality

216 6 OpenFOAM®

To avoid flow rates .φ f not respecting the equation of continuity (represented by the

pressure equation), the pressure field under-relaxation is performed after the flow

rates update. With the new pressure field and the updated value of .H(U), the new

velocity field can be obtained by explicitly solving the three matrix Eq. 6.15.

. Ux =
Hx (U)

Ax

+
1

Ax

bx ,

Uy =
Hy(U)

Ay

+
1

Ay

by,

Uz =
Hz(U)

Az

+
1

Az

bz .

The entire cycle is repeated until the convergence criteria are met or the maximum

number of iterations is reached. For implementation reasons, the iteration number

is referred to as “time” in OpenFOAM®. This cycle is often identified as the outer

corrector loop.

When comparing the PISO and SIMPLE algorithms, the main difference is that,

once the divergence-free velocity field is obtained, it is used to update the term . H(U)

and solve the pressure equation again. This cycle, also called the inner corrector loop,

is repeated a finite number of times, as specified by the keyword nCorrectors

(see Fig. 6.22). Once the number of repetitions is completed, the cycle proceeds as

in the SIMPLE case.

The control parameters of the PISO cycle in OpenFOAM® are contained in the file

fvOptions. This algorithm requires at least one correction; however, to improve

stability and accuracy, the number of corrections can be increased by modifying the

value associated with the keyword nCorrectors, as shown in Fig. 6.23. In the case

of a non-orthogonal grid, and to further improve stability, the number of times the

non-orthogonal correction cycle is executed can be increased by modifying the value

associated with the keyword nonOrthogonalCorrectors. For orthogonal grids, this

value can be set to zero, although setting it to 1 can help improve stability. For non-

orthogonal grids, the value cannot be less than 1 and may need to be higher depending

on the quality of the grid.

Through the value associated with the keyword momentumPredictor, it is pos-

sible to activate or inhibit the execution of the momentum predictor step necessary

to calculate the first value of the term .H(U) in the pressure equation. This step is

activated in the case of flows with a high Reynolds number. Although it helps to

stabilise the calculation, it is advisable to inhibit the execution of this step in the case

of weakly convective flows (i.e. those with a low Reynolds number). If this step is

executed, it is necessary to specify, in the fvOptions file, the linear solver to use

for all quantities *.Final. For the same quantities, the value of the under-relaxation

factor should be specified if under-relaxation is necessary.

In the case of non-stationary calculations, it is useful to stabilise the solution pro-

cess by reducing the time integration step size, possibly also acting on the constraint

6.4 Pressure-Velocity Coupling 217

Fig. 6.22 Flowchart of the PISO cycle

218 6 OpenFOAM®

Fig. 6.23 Control

parameters of the PISO cycle
PISO
{
 momentumPredictor yes;
 nCorrectors 2;
 nNonOthogonalCorrectors 1;
}

related to the maximum Courant number (see Sect. 6.4.2) achievable during the cal-

culation. Both the value of the time integration step size and the maximum Courant

number achievable during the calculation are specified in the controlDict file.

Reducing these two values increases the value of the time derivative term (.�φ/�t),

which, in the discretisation process, always appears within the elements of the main

diagonal of the coefficients matrix. As already seen, increasing the value of the ele-

ments of the main diagonal of the coefficients matrix increases its diagonal dominance

and, therefore, the stability of the solution process.

6.4.1.2 Implementation of the PIMPLE Cycle in OpenFOAM®

This algorithm (also known as PISO with iterative marching—PISO-ITA) differs

from PISO (also known as PISO with non-iterative marching—PISO-NITA) due to

the presence of an additional cycle indicated as the “SIMPLE Loop”. Figure 6.24

presents the PIMPLE algorithm as implemented in OpenFOAM®. The additional

cycle is useful for stabilising the solution of cases dealing with the simulation of

complex phenomena (for example, combustion or discontinuities). The additional

cycle is also useful when it is desirable to maintain large time steps, although it is

recommended not to have CFL numbers greater than 2. In OpenFOAM®, the control

parameters of the PIMPLE cycle are contained in the file fvOptions. The number

of times the “SIMPLE Loop” is executed is determined by the value associated with

the keyword nOuterCorrectors, as shown in Fig. 6.25. Setting this value to 1 is

equivalent to using the PISO algorithm. Given the considerable computational load

resulting from the execution of the “SIMPLE Loop”, usually, the value of 3 is not

exceeded.

Also for this algorithm, as in the previous two SIMPLE and PISO, it is possible

to make use of under-relaxation factors to increase the diagonal dominance of the

coefficients matrix. Like in PISO, by the value associated with the keyword momen-

tumPredictor, it is possible to activate or inhibit the execution of the momentum

predictor step (see Figs. 6.24 and 6.25). In the case where such a step is executed,

it is necessary to specify, in the fvOptions file, the linear solver to use as well as

the value of the under-relaxation factor for all *.Final quantities. If under-relaxation

is not to be used, it is possible to leave empty the area related to the keyword relax-

ationFactors. Otherwise, the syntax to set the same under-relaxation factor for all

quantities is shown in Fig. 6.26. Figures 6.27 and 6.28 show acceptable values of

under-relaxation factors if SIMPLE or SIMPLEC formulation is used, respectively.

6.4 Pressure-Velocity Coupling 219

Fig. 6.24 Flow diagram of the PIMPLE cycle

220 6 OpenFOAM®

Fig. 6.25 Control

parameters of the PIMPLE

cycle

PIMPLE
{
 momentumPredictor yes;
 nOuterCorrectors 1;
 nCorrectors 2;
 nNonOthogonalCorrectors 1;
}

Fig. 6.26 Setting of the

under-relaxation factors
relaxationFactors
{
 fields
 {

 }
 equations
 {

 }
}

Fig. 6.27 Possible values of

the under-relaxation factors

for SIMPLE formulation

relaxationFactors
{
 fields
 {

 }
 equations
 {

 }
}

Fig. 6.28 Possible values of

the under-relaxation factors

for SIMPLEC formulation

relaxationFactors
{
 fields
 {

 }
 equations
 {

 }
}

6.4 Pressure-Velocity Coupling 221

6.4.2 The Courant Number

In transient simulations, the calculation is conducted at successive time values. It

has been seen that the interval defined by two successive times cannot assume any

values but must respect the stability criterion of Courant-Friedrichs-Lewy, which is a

necessary, but not sufficient, condition for the numerical convergence of the solution

of some partial differential equations (usually, hyperbolic equations). According to

this criterion, to determine the amplitude of a wave that crosses the computational

domain by calculating its value at successive times, the interval determined by such

two times should not be greater than the time the wave takes to cross the single cell.

In this regard, considering for simplicity a one-dimensional computational domain

discretised with cells of the same size, it is possible to define the Courant number

.Co as

. Co =
u�t

�x

where . u is the flow velocity (the wave propagation velocity), .�t is the time interval,

and .�x is the extension of the cell. This number expresses the ratio between the

space travelled by the flow with velocity . u in time .�t and the extension .�x of the

cell. The stability criterion of Courant-Friedrichs-Lewy—CFL condition—requires

that.Co ≤ 1 in the case of explicit schemes, while for implicit schemes, this value can

be greater when an accurate description of the transient is not required. Therefore,

given a generic computational grid, the CFL condit

6.4.2.1 Expression of the Courant Number

In two- or three-dimensional computational domains, the calculation of the Courant

number is defined as follows. The length .�x is calculated as the ratio between the

volume .VP—area in the two-dimensional case—of the cell and the sum of the areas

.A f —lengths in the two-dimensional case—of the faces that define the cell.

. �x =
VP

∑

f A f

.

As for the velocity, the only component to consider is the one normal to the face.

Adding the velocity contribution of all the faces bounding the cell would result in a

zero value due to the validity of the mass conservation equation. For this reason, the

absolute value of the contribution of each face is summed, and the resulting value

is halved. By doing so, the following formula is obtained for the calculation of the

Courant number:

.Co =
1

2
�t

∑

f |U f · n f |A f

VP

222 6 OpenFOAM®

where .U f is the velocity vector at the centroid of the generic face, and .n f is the unit

vector normal to the corresponding face.

6.5 Residual and Tolerances

As already seen in Sect. 4.5, residuals are a measure of the error made when iteratively

solving a system of equations. Before solving the matrix equation resulting from

the application of the discretised form of the considered conservation equation, in

OpenFOAM®, the residual is calculated based on the known values of the quantities

involved. At the end of each iteration for the solution of the system, the calculation

of the residual is performed. Considering the system resulting from the application

of the momentum conservation equation for the only component along . x to all the

cells of the computational domain, the residual is calculated as

.rx =
‖MxUx − bx‖

‖MxUx − MxUx‖ + ‖MxUx − bx‖
. (6.21)

The numerator of Eq. 6.21 includes the norm of the difference between the left and

right-hand sides of Eq. 6.20. If the found solution were exact, this value would be

zero. At the denominator of Eq. 6.21, there is a dimensionless factor ensuring that the

calculated value for the residuals is not dependent on the scale (i.e., geometric dimen-

sions, module of characteristic velocities, etc.) of the generic problem addressed.

Indicating with the symbol .Ux the average of .Ux calculated considering all the cells

of the computational domain, and remembering that the norm .‖bx‖ of the column

matrix .bx is equal to the sum of the absolute values of each of its elements, the use

of the dimensionless factor also ensures that the residual is a single number rather

than a vector of size equal to the total number of cells with which the computational

domain has been discretised. The iterative process of solving the considered system

stops in OpenFOAM® if one of the following conditions is verified:

• the value of the residual is less than that set for the parameter tolerance;

• the value of the ratio between the current residual and that at the previous iteration

is less than that set for the parameter relTol;

• the number of iterations performed is greater than that set for the parameter

maxIter.

As seen before, when using algorithms such as PISO or PIMPLE, the matrix equation

associated with a generic quantity can be solved multiple times within the same

iteration of the algorithm (PISO/PIMPLE), according to the value assigned to the

parameter nCorrectors. In these cases, it is necessary to set specific values for

the stop parameters for the last step of the solution. An example of such a setting,

relating to the pressure solution equation—similarly it proceeds for velocity—is

shown in Fig. 6.29, in which the tolerance parameters for the last execution of the

iterative process are specified in There is a specific section in the fvSolution file

6.5 Residual and Tolerances 223

Fig. 6.29 Tolerance

parameters for the last

execution of the iterative

process

to specify the tolerance values of the residuals for the final iteration solution. The

name of this section is the same as the section relating to the intermediate iterations,

with the addition of the suffix Final. If the value associated with the parameter

nCorrectors is 4, the instructions in Fig. 6.29 impose that:

• the first three solutions of the matrix equation of the pressure can be stopped at a

reduced computational cost for a value of relTol equal to 0.05;

• for the last solution, greater accuracy is required and, with higher computational

costs, it will necessarily have to reach the value of the residual equal to . 1e − 06

since the value 0 deactivates the parameter relTol.

Chapter 7

Boundary Conditions

Incorrect imposition of boundary conditions can lead to computational instability,

lack of convergence, and incorrect or inaccurate results. Boundary conditions must

be specified consistently with various characteristics of the flow, such as the veloc-

ity regime at input and output, interactions with viscous walls, etc. A fundamen-

tal aspect is understanding the mathematical characteristics of the equations that

describe the flow under consideration, as described in Sect. 1.3. These mathemati-

cal characteristics define how flow properties and disturbances are transported both

within the computational domain and across its boundaries. Therefore, understanding

how information propagates in the flow, which aspects enter and which exit through

the boundaries, is fundamental in selecting the most appropriate boundary condi-

tions consistent with the physical characteristics of the flow and the mathematical

equations that represent it. In the case of incompressible flow, it has been observed

that information propagates equally in all directions. Conversely, to understand the

fundamental concepts underlying the correct imposition of boundary conditions in

compressible flow, it is necessary to briefly describe the Riemann problem of gas

dynamics. The Riemann problem is an initial value problem for the Euler equations;

in the one-dimensional case, the initial condition consists of a jump in the variables

between two states, with a uniform distribution on the left of the discontinuity and

another equally uniform distribution on the right (see Fig. 7.1). The solution of the

Riemann problem depends on the values of the variables in the left and right states.

The solution generally consists of three distinct waves that propagate at specific

speeds. In the shock tube problem, the initial discontinuity evolves into three waves.

The intermediate wave is a contact discontinuity that propagates at the local fluid

velocity . u. The other two waves propagate at velocities .u − c and .u + c, where . c

is the speed of sound in the fluid under consideration. Referring to Fig. 7.2, in the

simplest case where the local fluid velocity . u is zero, there will be a rarefaction wave

propagating in the gas towards the left and a shock wave propagating to the right.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_7

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_7&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7
https://doi.org/10.1007/978-3-031-88957-8_7

226 7 Boundary Conditions

Fig. 7.1 Initial condition of

the Riemann problem

Fig. 7.2 Structure of the

solution of the Riemann

problem in the .x − t plane

for the one-dimensional

Euler equation

Each of these waves follows a characteristic curve (see Sect. 1.3.3):.C0 for the contact

discontinuity, .C− for the wave propagating at velocity .u − c, and .C+ for the wave

propagating at velocity .u + c.

To apply these concepts to boundary condition imposition, a one-dimensional

compressible flow is considered. Referring to Figs. 7.3, 7.4, and 7.5, the characteristic

.C− is negative (residing in the negative semi-plane of the abscissas) if the flow

is subsonic and positive (residing in the positive semi-plane of the abscissas) if

the flow is supersonic. At the inlet, the characteristics .C0 and .C+ have slopes . u

and .u + c, respectively, and are always positive for a flow directed in the positive

abscissa direction. Therefore, these two characteristics convey information from

the exterior to the interior of the computational domain through the boundary. The

third characteristic, .C−, has a sign that depends on the Mach number: it is positive

for a supersonic inlet flow and negative for a subsonic inlet flow. It follows that, for

subsonic inlet flows, information related to the characteristic.C− cannot be specified a

priori in the boundary condition at the inlet. Similar considerations apply to the outlet

boundary, where no conditions need to be imposed for the characteristics .C+ and .C0.

For.C−, a condition must be imposed if the exit flow is subsonic, whereas no condition

Fig. 7.3 Boundary

conditions for

one-dimensional supersonic

flow

7.1 Boundary Conditions for Incompressible Flow 227

Fig. 7.4 Boundary

conditions for

one-dimensional subsonic

flow

Fig. 7.5 Boundary

conditions for variable

section unidimensional flow

is required if the flow is supersonic. Each characteristic conveys information about

a single variable, and only the variables transported through the boundaries into the

domain define a physical boundary condition. The remaining variables, transported

out of the computational domain, are determined by the computed flow itself. In this

case, numerical boundary conditions are considered, where the necessary information

is obtained by extrapolation from the downstream flow (for an inlet boundary) or from

the upstream flow (for an outlet boundary). A boundary cell is a cell with at least one

face positioned on the boundary of the computational domain; such a face is referred

to as a boundary face.

7.1 Boundary Conditions for Incompressible Flow

The conservation equations of momentum (Eq. 6.5)

.

∂U

∂t
+ ∇ · (UU) − ν∇2U = −∇ p

and pressure (Eq. 6.11)

.∇2 p + ∇ · [∇ · (UU)] = 0

228 7 Boundary Conditions

as reported for simplicity, describe the motion of an incompressible flow. The pressure

equation combines the conservation equations of momentum and mass and does not

contain any time derivative term, thus highlighting that, for incompressible flows,

the speed of sound is infinite (.c = ∞). This means that quantities throughout the

computational domain are instantaneously influenced by any disturbance at any point

in the domain. Specifically, the term.∇2 p describes the instantaneous pressure change

across the computational domain in response to a change in velocity at any single

point. In turn, the pressure change causes an instantaneous change in the velocity

field across the domain, which also varies (on finite time scales) due to advection

and diffusion.

In transport phenomena, modelling advection terms requires the calculation of

the face value (.φ f) by interpolating between the values (. φ) of the same quantity at

the centres of the two cells sharing the face. For boundary cells at the inlet, there

is no second cell centre through which to determine the value of the quantity on

the boundary face. Thus, from a numerical perspective, it is straightforward to set a

constant value for the considered quantity at these faces. In this context, for incom-

pressible flow, the behaviour of the pressure is particular because the instantaneous

propagation of pressure disturbances results in the absence of advection. As a con-

sequence, it is not necessary to discretise the advective term for pressure (as it is

absent) and therefore calculate the pressure at the boundary face of the inlet cell by

interpolation. For these reasons, it is preferred not to fix the value of pressure at the

inlet of the computational domain. Instead, the pressure gradient is set at the inlet.

For the faces of the outlet boundary, the opposite is true: the pressure value is set,

while the gradient value is set for all other quantities.

• velocity, and possibly temperature, are imposed at the inlet;

• for boundaries with a symmetry condition, the gradient in the direction normal to

the boundary is set to zero for all scalar quantities. Additionally, the component of

velocity in the direction parallel to the boundary is set to zero, as is the component

of velocity normal to the boundary;

• for boundaries with a wall condition, velocity is set to zero, and the normal stress

at the wall, temperature, and heat flow are prescribed as constant;

• pressure is imposed on the exit boundary;

• zero gradient is imposed for the remaining quantities at the outlet.

The imposition of a velocity value at both the inlet and the outlet results in a

numerically unstable system.

7.1.1 The Relative Nature of Pressure

In incompressible cases where none of the boundaries have a specified pressure

value, a difficulty arises due to the relative nature of the pressure. This is because, in

the momentum conservation equation, only pressure gradients appear. In this case,

7.1 Boundary Conditions for Incompressible Flow 229

Fig. 7.6 Example of setting

parameters related to the

reference pressure

PISO
{
 nCorrectors 2;
 nNonOthogonalCorrectors 1;
 pRefCell 0;
 pRefValue 0;
}

pressure differences are meaningful, whereas absolute pressure values are irrelevant.

This indeterminacy results in a singular coefficient matrix. Because the coefficient

matrix is singular, it is not invertible, leading to the failure of the simulation process.

This problem is resolved by setting the pressure value at a point within the domain.

This ensures that the pressure values at all other points in the computational domain

are relative to the set value.

In OpenFOAM®, this value is set by inserting the entry pRefValue in the

fvSolution file, within the zone where the parameters of the chosen pressure-

velocity coupling strategy are specified. Figure 7.6 shows an example of how this

parameter is set.

The parameter pRefPoint/pRefCell defines the position inside the compu-

tational domain at which the reference pressure is assumed to be equal to the value

specified by pRefValue.

7.1.2 Inlet

At the inlet of the computational domain, three types of boundary conditions are

typically used:

1. imposed velocity (magnitude and direction);

2. static pressure and direction of velocity imposed;

3. total pressure and direction of velocity imposed.

7.1.2.1 Imposed Velocity

The subscript . b indicates the quantities referred to the boundary. In this case, it is:

• .pb, the pressure to be determined during the simulation execution based on the

values inside the computational domain;

• the flow rate .ṁb, uniquely determined;

• the velocity . vb, imposed.

The pressure at the boundary is extrapolated from the centroid .C of the considered

boundary cell:

.pb = pC + ∇ p
(n)

C · dCb.

230 7 Boundary Conditions

Being .∇ pC the pressure gradient calculated at the centre . C of the considered bound-

ary cell, .∇ p
(n)

C is the component in the direction normal to the considered boundary

face. .dCb is the vector indicating the distance between the centre of the considered

boundary cell and the centre of the corresponding boundary face.

7.1.2.2 Static Pressure and Velocity Direction Imposed

In this case, the pressure .pb and the versor .ev of the velocity vector are known

because they are imposed. The magnitude of the velocity can be calculated using the

continuity equation since the boundary pressure gradient is known, as the pressure

on the boundary face and in the centroid of the actual cell are known. The velocity at

the boundary is recalculated at each iteration, consistently modifying the coefficients

of the momentum equation as in the previous case.

7.1.2.3 Total Pressure and Velocity Direction Imposed

In this case, the velocity and the pressure at the boundary are not known, although

they are linked by the total pressure expression:

.p0 = p
︸︷︷︸

static pressure

+
1

2
ρv · v

︸ ︷︷ ︸

dynamic pressure

. (7.1)

The mass flow is calculated using the continuity equation. Knowing the pressure from

the initial condition or from the value obtained at the previous iteration, the velocity

is obtained from Eq. 7.1. The velocity is then treated as a condition of fixed velocity

(that is, Dirichlet boundary condition) by consistently modifying the coefficients in

the momentum equation.

7.1.3 Outlet

Three types of outlet boundary conditions will be considered:

1. imposed static pressure;

2. imposed flow rate;

3. fully developed flow.

7.1 Boundary Conditions for Incompressible Flow 231

7.1.3.1 Imposed Static Pressure

In this case, the pressure at the boundary .pb is known because it is imposed while

velocity and flow rate are not known. It is assumed that conditions of fully developed

flow and therefore zero velocity gradient in the direction normal to the considered

boundary are verified. Therefore, the velocity at the boundary is assumed to be equal

to that at the centroid of the considered boundary element.

7.1.3.2 Imposed Flow Rate

In this case, the flow rate is known because it is imposed, while the velocity and

the pressure at the boundary .pb are not known. Given the incompressibility of the

flow, imposing the flow rate is equivalent to imposing the component of the velocity

normal to the boundary. It is assumed that the direction of the velocity is the same

as that at the centroid of the actual boundary cell.

7.1.3.3 Fully Developed Flow (Outflow)

In this case, the velocity gradient in the normal direction is assumed to be zero at

the outlet, so the velocity at the outlet is assumed to be equal to that at the centroid

of the considered boundary element. The value of the pressure at the boundary is

extrapolated from the pressure values and pressure gradient in the centroid of the

considered boundary element. Particular attention must be paid to the use of this

boundary condition in relation to the positioning of the boundary itself with respect

to the gradients of the velocity. As shown in Fig. 7.7, the assumption of zero velocity

gradient in the direction normal to the outlet would be incorrect in the case where

the exit boundary is positioned in correspondence with Sects. 1 or 2.

Fig. 7.7 Positioning of the boundary with respect to the gradients of the quantities representative

of the considered flow

232 7 Boundary Conditions

7.2 Boundary Conditions for Compressible Flow

The flow at the inlet can be subsonic or supersonic; the nature of equations changes

depending on the considered case, going from elliptical to hyperbolic respectively.

The approach used to solve these equations will be consistently different.

7.2.1 Subsonic Inlet

In the case of a subsonic inlet, three types of boundary conditions will be considered:

1. fixed velocity;

2. static pressure and fixed velocity direction;

3. fixed velocity direction and total pressure.

The last type of boundary condition should be used only when the flow within the

domain becomes supersonic.

7.2.1.1 Fixed Velocity

In this case it will be: .pb to be calculated, .ṁb imposed, .vb imposed. Differently

from the incompressible case, the density depends on the pressure so the flow rate

remains unknown. The pressure at the boundary is therefore firstly calculated by

extrapolation as done for the incompressible case and then, from this, the density is

deduced.

7.2.1.2 Static Pressure and Imposed Velocity Direction

The implementation is similar to that of the incompressible case.

7.2.1.3 Total Pressure and Imposed Velocity Direction

In this case, the pressure and velocity are unknown although they result linked by

the definition of total pressure:

.p0,b = pb

(

1 +
γ − 1

2
M2

b

) γ
γ−1

(7.2)

where the subscript . b is used to refer to the conditions on the boundary, while . γ is

the ratio of specific heats. Finally, .Mb is the Mach number at the boundary:

7.2 Boundary Conditions for Compressible Flow 233

.Mb =

√
vb · vb

γRTb

. (7.3)

Similarly to what has already been done in the incompressible case, it is possible to

obtain the value of .Mb by setting the value of .p0,b, knowing the value of .pb from

the initial conditions or from the previous iteration, and using Eq. 7.2. Equation 7.3

gives the value of .vb since the value of .Tb is obtained from the initial conditions or

from the previous iteration. It should be mentioned that the boundary condition for

the energy equation at the inlet consists of specifying the static temperature .Tb or the

total temperature .T0,b. When the total temperature is specified, at each iteration the

value of the static temperature is calculated using the formula that defines the total

temperature:

. T0,b = Tb +
vb · vb

2cp

.

7.2.2 Supersonic Inlet

In this case, it is necessary to specify the value of all variables: pressure, velocity,

and temperature.

7.2.3 Subsonic Outlet

In the case of a subsonic exit, two types of boundary conditions are considered:

1. imposed static pressure;

2. imposed flow rate.

7.2.3.1 Fixed Static Pressure

In this case, flow rate and velocity must be determined. Assuming to be zero the value

of the velocity gradient, it is possible to extrapolate its value at the boundary from the

centroid of the cells inside the domain. Even for the calculation of the density (and

therefore the flow rate) a constant gradient (that is, Neumann) condition is applied

to the energy equation.

7.2.3.2 Fixed Flow Rate

Given the flow rate, it is possible to obtain pressure, velocity and temperature

by applying the Neumann boundary condition of constant gradient to the energy

equation.

234 7 Boundary Conditions

7.2.4 Supersonic Outlet

In this case, the value of none of the variables pressure, density, temperature, velocity

has to be specified; such values are extrapolated from the values in the centroids of

the boundary cells of the computational domain.

7.3 Boundary Conditions Available in OpenFOAM®

Some of the boundary conditions available in OpenFOAM® will be briefly described.

7.3.1 Imposition of the Value and Gradient of a Quantity

at the Boundary

As seen in Chap. 4, the finite volume method leads to writing a discretised conser-

vation equation for each grid cell. Grouping the equations of all the cells results in

a system that, in its matrix form can be written as .Aφ = b. In Chap. 3, it was seen

that the discretised general transport equation contains two elements involving the

computation of the value of the quantity considered at the centre of the face shared

by two cells:

• the advection term. 1 In the case of constant density, the advection term is . ∇ · (uφ)

which, discretised becomes .
∑

f S f · u f φ f . When the density is not constant, the

advection term is .∇ · (ρuφ) which, discretised becomes .
∑

f S f · (ρu) f φ f ;

• the Laplacian term. In the case of constant density, the Laplacian term is. ∇ · (Ŵ∇φ)

which, discretised becomes .

∑

f

∣
∣S f

∣
∣Ŵ f ∇nφ f . When the density is not constant,

the Laplacian term is .∇ · (ρŴ∇φ) and discretised becomes .
∑

f

∣
∣S f

∣
∣ (ρŴ) f ∇nφ f

in which the symbol .∇nφ f represents the component normal to the face of the

gradient of the quantity .φ f .

From what has just been observed, it is clear that, for boundary cells, it is necessary

to impose, at the corresponding face, both the value of.φ f (to allow the calculation of

the advective term) and .∇nφ f (to allow the calculation of the Laplacian or diffusive

term). This process is calledboundary conditions imposition. The boundary condition

that specifies the imposition of a specific value .φb for the considered quantity is

called the Dirichlet condition. In OpenFOAM®, the Dirichlet boundary condition is

indicated by the termfixed value. The boundary condition that specifies the imposition

of a particular value for .∇nφb (the component normal to the face of the gradient of

1 Volumetric.S f · u f and mass.S f · (ρu) f flows are indicated in OpenFOAM
® with the symbol. φ f

while here the symbol .φ f represents the value of the quantity considered at the centre of the face

(see also Sect. 6.1.2).

7.3 Boundary Conditions Available in OpenFOAM® 235

the considered quantity) is called the Neumann condition. In OpenFOAM®, it is

indicated by the term fixed gradient.

For the calculation of the advective term in the case of the fixed value boundary

condition, .φ f = φb is set. When the fixed gradient boundary condition is imposed,

the value of .φ f on the boundary face is set by extrapolating the value of the quantity

from the cell centre using the gradient .∇nφb set in the boundary condition. For the

calculation of the Laplacian term, in the case of the fixed value boundary condition,

the value of .∇nφb is based on the value assumed by the quantity in the cell centre

and the value imposed for the quantity on the face by the boundary condition. In the

case of the fixed gradient boundary condition, .∇nφ f = ∇nφb is set. An example of

the use of these two types of boundary conditions is the case of incompressible flow

within a duct. In this case, the imposed boundary conditions are:

• at the inlet: zero value for the gradient (zeroGradient) of the pressure and fixed

value for all other quantities;

• at the outlet: fixed value for the pressure and zeroGradient for all other quantities.

7.3.2 Inlet-Outlet

There may be cases where it is not possible to uniquely define the flow as outgoing

or incoming at the boundary, as shown in Fig. 7.8, where:

• at the upper boundary, the flow is partly outgoing and partly incoming in the

computational domain;

• at the thin boundary on the left, the flow is incoming in the computational domain;

• at the thin boundary on the right, the flow is outgoing from the computational

domain;

• the remaining boundaries are walls and are not crossed by flow.

Naming atmosphere as the upper boundary in Fig. 7.8, in the p configuration file

for the boundary and initial conditions of pressure, the lines shown in Fig. 7.9 will

appear. This boundary condition will ensure that, for those faces where the flow is

outgoing, the pressure value will be fixed and equal to that specified by the word

value. For those faces where the flow is incoming with velocity . U, the pressure

value is calculated according to the following formula:

. p = p0 −
|U|2

2
.

Since the flow is incompressible, the software identifies . p as the kinematic pressure,

which is the ratio between pressure and density, explaining the absence of the density

term on the right-hand side of the above formula.

236 7 Boundary Conditions

Fig. 7.8 Computational domain with a boundary characterised by partly incoming and partly

outgoing flow

Fig. 7.9 Example of total

pressure boundary condition

configuration

atmosphere
{
 type totalPressure;
 p0 uniform 0;
 value uniform 0;
}

Fig. 7.10 Example of

boundary condition

configuration for velocity

atmosphere
{
 type pressureInletOutletVelocity;
 value uniform (0 0 0);
}

In the U configuration file for the boundary and initial conditions of velocity, the

lines shown in Fig. 7.10 will appear. This boundary condition will ensure that, for

those faces where the flow is outgoing, a zero gradient boundary condition is set for

the velocity; for those faces where the flow is incoming, a zero value will be set for

the velocity component parallel to the boundary and a zero gradient for the velocity

component orthogonal to the boundary.

The tutorial incompressible/pimpleFoam/RAS/flowWithOpen

Boundary, available in the version downloaded from the website

www.openfoam.org, demonstrates how to handle a boundary where the flow is

Fig. 7.11 Example of

boundary condition

configuration for the

temperature

atmosphere
{
 type inletOutlet;
 inletValue uniform 0;
 value uniform 0;
}

http://www.openfoam.org

7.3 Boundary Conditions Available in OpenFOAM® 237

partly outgoing and partly entering the computational domain. In this tutorial, the

transport of temperature is also considered. In the T configuration file for the bound-

ary and initial conditions of temperature, the lines shown in Fig. 7.11 appear. This

boundary condition ensures that, for those faces where the flow is outgoing, a bound-

ary condition with zero gradient (zeroGradient) is set for the temperature. For

those faces where the flow is incoming, a zero value will be set for the temperature.

For any other scalar quantity involved in the simulation, this type of boundary

condition must be used.

Chapter 8

Turbulence

Turbulence is a phenomenon that arises from the instability of laminar flow caused

by the amplification of disturbances due to strongly non-linear inertial effects.

The universally accepted theory is that developed by Kolmogorov, known as the

energy cascade. According to this theory, a turbulent flow consists of vortices of

various sizes, each associated with a different energy level. Figure 8.1 presents a

schematic, referred to as the energy density spectrum, which illustrates the energy

levels of turbulent vortices as a function of the inverse of their sizes.

The energy level of turbulent vortices is represented by the turbulent kinetic energy

density, denoted by the symbol . E . The inverse of the size of turbulent vortices is

called the wave number and is typically denoted by the symbol . κ. Although very

similar, this symbol differs from . k, which represents turbulent kinetic energy. It may

be useful here to distinguish between the concept expressed by the word vortex and

that of the word “eddy” (turbulent vortex). In the context of turbulence, we generally

refer to eddies where turbulent vortices break down into smaller turbulent vortices,

giving rise to the phenomenon known as the energy cascade. The term vortex is used

when describing more stable structures whose physics does not necessarily involve

turbulence, meaning they are not expected to decay into smaller vortices.

The size of larger turbulent vortices is typically comparable to the dimensions

of the objects that confine the flow. These larger eddies progressively break down

into smaller eddies with lower energy levels, continuing this process until they reach

scales small enough that molecular viscosity can dissipate kinetic energy into thermal

energy. At the smallest scales, local velocity gradients become sufficiently high to

generate significant viscous stress, even when fluid viscosity is low (see the concept

of turbulent kinetic viscosity discussed below).

The Navier–Stokes equations can describe the energy cascade phenomenon, pro-

vided that temporal and spatial integration scales are chosen to resolve phenomena at

the smallest relevant scales. This approach is known as Direct Numerical Simulation

(DNS).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_8

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8
https://doi.org/10.1007/978-3-031-88957-8_8

240 8 Turbulence

Fig. 8.1 Kolmogorov’s

energy density spectrum

The DNS approach entails computational costs that are prohibitive in most prac-

tical cases due to the need for extremely small temporal and spatial integration

intervals.

The random fluctuations inherent in turbulence, combined with the wide range of

temporal and spatial scales involved, have necessitated the use of statistical analysis

techniques to mitigate the challenges of DNS. One such technique is known as Large

Eddy Simulation (LES), which identifies larger vortices through spatial statistical

analysis and simulates them, while modelling the smaller vortices.

Computational cost can be further reduced using the Reynolds Averaged Navier–

Stokes (RANS) technique, which applies temporal rather than spatial statistical anal-

ysis. This remains the most widely used approach, as it provides acceptable results

in most cases while requiring significantly less demanding computational grids and

temporal integration intervals compared to DNS or LES.

8.1 Reynolds Averaged Navier–Stokes Approach

This technique is based on using the time-averaged values of velocity, pressure, and

temperature in the Navier–Stokes equations. Referring to Fig. 8.2, these quantities

are decomposed into their mean (. v, . p, . T) and fluctuating (. v′, . p′, . T ′) components:

.

v = v + v′,

p = p + p′,

T = T + T ′,

v = ui + vj + wk,

v′ = u′i + v′j + w′k.

8.1 Reynolds Averaged Navier–Stokes Approach 241

Fig. 8.2 Example of

instantaneous velocity

values, average velocity and

fluctuations

We will now consider the Navier–Stokes equations written for the case of an

incompressible flow with constant viscosity, and in the absence of body forces and

energy sinks or sources.

.

∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρvv) = −∇ p + ∇ · τ ,

∇ ·
(

ρcpT
)

+ ∇ ·
(

ρcpvT
)

= ∇ · (k∇T) + ρT
Dcp

Dt

The substitution of time-averaged values of velocity, pressure, and temperature leads

to the Reynolds-averaged Navier–Stokes (RANS) equations:

.

∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρvv) = −∇ p + ∇ ·

(

τ − ρv′v′
)

,

∇ ·
(

ρcpT
)

+ ∇ ·
(

ρcpvT
)

= ∇ ·
(

k∇T − ρcpv′T ′
)

+ ρT
Dcp

Dt

(8.1)

These equations are similar to the original Navier–Stokes equations but differ in

key aspects. In the case of the momentum conservation equation, an additional term,

.ρv′v′, appears alongside the stress tensor . τ . This additional term is known as the

Reynolds stress tensor.

. τ
R = −ρv′v′ = −ρ

⎛

⎝

u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

⎞

⎠

which, in the three-dimensional case, introduces six new unknowns. Indeed,

considering that

.u′v′ = v′u′ u′w′ = w′u′ v′w′ = w′v′

242 8 Turbulence

Fig. 8.3 A fluid element

within the turbulent

boundary layer of

momentum

Fig. 8.4 Gradient of mean

velocity

Fig. 8.5 Gradient of the

fluctuating component of

velocity

we obtain the symmetric tensor

. τ
R = −ρ

⎛

⎝

u′u′ u′v′ u′w′

v′v′ v′w′

w′w′

⎞

⎠ .

To better understand the physical meaning of the Reynolds stress tensor, consider

the fluid element within a two-dimensional turbulent flow within the boundary layer,

as shown in Fig. 8.3. The shear stress acting on this generic fluid element can be

divided into two components: one due to the gradient of the mean velocity and the

other due to the gradient of the fluctuating velocity component.

The component of the shear stress due to the gradient of the mean velocity (see

Fig. 8.4) is given by the term . τ in Eq. 8.1; the component of the shear stress due

to the gradient of the fluctuating velocity component (see Fig. 8.5) is given by the

Reynolds stress tensor in Eq. 8.1, .τ R = −ρv′v′.

8.1 Reynolds Averaged Navier–Stokes Approach 243

In the case of the energy conservation equation, an additional term . ρcpv′T ′

appears. This term is known as the turbulent heat flux vector

. q̇R = −ρcp

⎛

⎝

u′T ′

v′T ′

w′T ′

⎞

⎠

which, in the three-dimensional case, introduces three new unknowns.

The calculation techniques used to determine the values of these new unknowns

are referred to in the literature as turbulence modelling.

Attempting to use the Navier-Stokes conservation equations directly to determine

these unknowns would introduce even more unknowns, resulting in a not-closed

system where the number of equations is lower than the number of unknowns. For

this reason, any turbulence model must be capable of representing the non-linear

fluctuation components described by the Reynolds stress tensor, as well as the three

components of the turbulent heat flux, in terms of the mean components.

One possibility for obtaining information about the fluctuation components from

the mean ones is provided by the Boussinesq hypothesis. 1 In this context, it is impor-

tant to recall Newton’s law of viscosity, which states that the shear stress is propor-

tional to the velocity gradient, with the proportionality constant being . μ, known as

dynamic viscosity (see Sect. 2.5.1). The underlying observation of the Boussinesq

hypothesis is that, even in turbulent flows, there is momentum transport between

layers of fluid characterised by different mean velocities (i.e., particles in layers

with higher mean velocities “drag” or accelerate particles in layers with lower mean

velocities, and vice versa). The Boussinesq hypothesis states that the elements of

the Reynolds stress tensor are a linear function of the gradient of the mean velocity

proportional to the constant . μt . This relationship is expressed in vector notation as

.τ R = −ρv′v′ = μt

[

∇v + (∇v)T −
1

3
(∇ · v)

]

−
2

3
ρkI (8.2)

or, using tensor notation (see Eq. 2.23), as

.τ R
i j = −ρv′

iv
′
j = μt

[

∂vi

∂x j

+
∂v j

∂xi

−
1

3

∂vk

∂xk

δi j

]

−
2

3
ρkδi j (8.3)

where .i, j = 1, 2, 3, .δi j is the Kronecker delta (.δi j = 1 when .i = j , .δi j = 0 when

.i �= j). In this context we employ the convention of repeated indices (see Sect. 1.1.5)

where, when .i = j ,

.

∂vk

∂xk

=
∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
=

∂u

∂x
+

∂v

∂y
+

∂w

∂z
.

1 Joseph Boussinesq, Essay on the theory of running waters, Paris, National Printing Office, 1877.

244 8 Turbulence

Referring to the strain rate tensor (see Sect. 1.2.1), defined in tensor notation as

. Si j =
1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

and in particular to its deviatoric part

. S∗
i j =

1

2

(

∂vi

∂x j

+
∂v j

∂xi

−
1

3

∂vk

∂xk

δi j

)

it is possible to write Eq. 8.3 as

. τ R
i j = −ρv′

iv
′
j = 2μt S∗

i j −
2

3
ρkδi j .

In the incompressible case, Eq. 8.2 becomes

. τ R = −ρv′v′ = μt

[

∇v + (∇v)T
]

−
2

3
ρkI

or, using tensor notation, as

. τ R
i j = −ρv′

iv
′
j = μt

[

∂vi

∂x j

+
∂v j

∂xi

]

−
2

3
ρkδi j

where . k is the turbulent kinetic energy per unit mass defined as

.k =
1

2
v′ · v′ =

1

2

(

u′u′ + v′v′ + w′w′
)

. (8.4)

The presence of the term .− 2
3
ρkI or equivalently, the term .− 2

3
ρkδi j is necessary

to ensure that the expression of the Reynolds stress tensor is consistent with the

definition of turbulent kinetic energy. Specifically, this term allows the sum of the

normal stresses, or the sum of the elements of the main diagonal of the Reynolds

stress tensor, to equal the turbulent kinetic energy as defined in Eq. 8.4.

.μt is the proportionality constant between Reynolds stresses and the gradients of

the mean velocity component..μt is called turbulent dynamic viscosity or eddy viscos-

ity. As .μt increases, for a given mean velocity gradient, the transport of momentum

between fluid particles with different mean velocity values also increases. It is also

noted that:

• .μt is not a characteristic of the fluid itself, but rather of the specific flow being

considered;

• .μt is a mathematical abstraction whose value must nonetheless be determined.

8.1 Reynolds Averaged Navier–Stokes Approach 245

. I is the identity matrix of order three. Under the Boussinesq hypothesis, the problem

of calculating the Reynolds stress tensor is therefore reduced to determining the

kinetic energy and turbulent viscosity.

Similarly, turbulent thermal fluxes are calculated in analogy with Fourier’s law:

. q̇R = −ρcpv′T ′ = kt∇T

where .kt denotes the turbulent thermal diffusivity.

It is noted that:

1. there are turbulence models that do not rely on the Boussinesq hypothesis, among

which are the Reynolds Stress models;

2. models based on the Boussinesq hypothesis are used in the LES approach,

including the Smagorinsky model and the Smagorinsky dynamic model.

Turbulence models that are based on the Boussinesq hypothesis are known as eddy

viscosity models and can be divided into four main categories:

• algebraic models (zero-equation models);

• one-equation models;

• two-equation models;

• second-order closure models.

Each class has a specific scope of applicability relative to the type of flow considered.

Algebraic models use algebraic equations to calculate. μt , thus avoiding the need to

solve differential equations. One-equation models involve solving a single differen-

tial transport equation for turbulent viscosity. Two-equation models involve solving

two differential transport equations to calculate turbulent viscosity. The second-order

closure models are the most computationally demanding as they solve six different

transport equations, one for each component of the turbulent flow. The most widely

used class is the two-equation models as they represent the best compromise between

computational cost and accuracy of results.

It should be noted, finally, that turbulence models based on the Boussinesq hypoth-

esis tend to provide inaccurate results in cases where the underlying assumptions may

be unverified. Specifically, this occurs in the case of shock jets, as well as flows in

ducts characterised by strong curvature or sudden changes in section. 2

OpenFOAM® has the ability to perform calculations using one of the available

turbulence models, among which there are:

• LRR: Launder, Reece and Rodi Reynolds-stress;

• RNGkEpsilon: Renormalisation group k-epsilon;

• SpalartAllmaras: Spalart-Allmaras one-equation;

• kEpsilon: standard k-epsilon;

2 T.J. Craft et al., Impinging jet studies for turbulence model assessment—II. An examination of the

performance of four turbulence models, International Journal of Heat and Mass Transfer, Elsevier,

1993.

246 8 Turbulence

• LaunderSharmaKE: k-epsilon modified by Launder and Sharma to also model

the zones (near the walls) with a low Reynolds number;

• SSG: Speziale, Sarkar and Gatski based on the calculation of the Reynolds stress

tensor;

• kOmega: standard k-omega;

• kOmegaSST: k-omega-SST (Shear Stress Transport);

• kOmegaSSTLM: 4-equation model of Langtry-Menter based on the k-omega-

SST model;

• kOmegaSSTSAS: “Scale-Adaptive-Simulation” model based on k-omega-SST;

• laminar: laminar;

• realizableKE: Realizable k-epsilon;

• qZeta: Gibson and Dafa’Alla’s two-equation q-Zeta model.

8.1.1 Standard .k − ǫ Model

In this model, the turbulent viscosity and thermal diffusivity are expressed as

.

μt = ρCμ

k2

ǫ
,

kt =
cpμt

Prt

.

From the expression of the turbulent viscosity . μt , it is noted that it is necessary to use

a transport differential equation for each of the two terms: the turbulent kinetic energy

. k and the dissipation of turbulent kinetic energy per unit of mass and time . ǫ, owing

to viscous stresses. In other words, . ǫ is the rate of transformation of turbulent kinetic

energy into thermal energy per unit of mass and time due to molecular viscosity. To

simplify the notation, we have eliminated the bar that indicates average quantities.

The two equations used in this model are as follows:

• the transport equation of turbulent kinetic energy, . k

.

∂ρk

∂t
+ ∇ · (ρvk) = ∇ ·

(

μe f f,k∇k
)

+ Pk − ρǫ;

• the empirical equation for the transport of the rate of dissipation of turbulent kinetic

energy per unit of mass, . ǫ

.

∂ρǫ

∂t
+ ∇ · (ρvǫ) = ∇ ·

(

μe f f,ǫ∇ǫ
)

+ Cǫ1

ǫ

k
Pk − Cǫ2ρ

ǫ2

k

The following values are assigned empirically: .Cǫ1 = 1.44, .Cǫ2 = 1.92, .Cμ = 0.09,

.σk = 1, .σǫ = 1.3, the turbulent Prandtl number .Prt = 0.9. The compact form of the

.Pk term, representing the production of turbulent kinetic energy, is given by

8.1 Reynolds Averaged Navier–Stokes Approach 247

. Pk = τ R · ∇v.

The terms .μe f f,k and .μe f f,ǫ represent the effective viscosity which is the result of the

sum of the fluid molecular viscosity and the turbulent viscosity of the flow. These

terms are given by

. μe f f,k = μ +
μt

σk

, μe f f,ǫ = μ +
μt

σǫ

.

Since this model was initially designed to describe external flows in the absence of

adverse pressure gradients (pressure gradients opposite to the flow velocity direction),

with high Reynolds numbers and fully developed turbulence, it will provide the best

results for such flows.

It is now possible to define the Reynolds number of the turbulence as:

. Reτ =
k2

ǫν

in which the turbulent kinetic energy .k ∼ u2 (where the symbol .∼ denotes “same

order of magnitude”) represents the velocity scale . u of the turbulent vortices, while

the dissipation term . ǫ characterises the scale . l of the turbulent vortices, given by

.ǫ ∼ u3

l
.

The standard .k − ǫ model belongs to the class of turbulence models known as

high Reynolds number turbulence models. In cases where turbulent phenomena occur

near a contour where the velocity is set to zero (such as a wall), it is necessary to

modify the standard .k − ǫ model appropriately to ensure it provides accurate results

in the vicinity of the wall, where the Reynolds number of the turbulence is lower. In

general, turbulence models that are able to correctly describe the wall behaviour are

called low Reynolds number turbulence models. This designation also applies to low

Reynolds number versions of generic turbulence models, such as the one proposed

by Launder and Sharma. 3 In the specific case of the .k − ǫ model, damping functions

are introduced. Damping functions modify the values of the constants .Cǫ1, .Cǫ2, and

.Cμ depending on the distance from the wall.

8.1.2 .k − ω Model

In place of dissipation of turbulent kinetic energy . ǫ, this model introduces the . ω

rate of energy conversion from turbulent kinetic energy to internal energy per unit

volume and time. The use of this parameter allows for a better description of flows

where there is an adverse pressure gradient resulting in boundary layer separation.

3 B.E. Launder and B.I. Sharma, Application of the energy-dissipation model of turbulence to the

calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, Vol. 1, pp. 131–138,

1974.

248 8 Turbulence

The term . ω is defined as

.ω =
ǫ

Cμk
. (8.5)

As in the case of the .k − ǫ model, two equations are solved here, one for . k:

.

∂ρk

∂t
+ ∇ · (ρvk) = ∇ ·

(

μe f f,k∇k
)

+ Pk − β∗ρkω (8.6)

and one for . ω:

.

∂ρω

∂t
+ ∇ · (ρvω) = ∇ ·

(

μe f f,ω∇ω
)

+ Cα1

ω

k
Pk − Cβ1ρω2 (8.7)

in which

. μe f f,k = μ +
μt

σk1

μe f f,ω = μ +
μt

σω1

.

The following values are empirically assigned:.Cα1 = 5/9,.Cβ1 = 0.075,.β∗ = 0.09,

.σk1 = 2, .σω1 = 2, the turbulent Prandtl number .Prt = 0.9. The turbulent viscosity

and thermal diffusivity are defined as

.

μt = ρ
k

ω
,

kt =
μt

Prt

.

The advantages of using . ω instead of . ǫ are all related to its equation that:

• is more easily integrable;

• is able to correctly describe the turbulent phenomenon even near a wall;

• provides satisfactory results even in the presence of adverse pressure gradients.

The weakness of this turbulence model is the extreme sensitivity of the results to

the undisturbed flow values set as boundary conditions for . ω. This problem does not

affect the .k − ǫ model.

8.2 .k − ω SST (Shear Stress Transport) Model

This model derives from the one known as Baseline .k − ω (.k − ω BSL) which

attempts to combine the positive aspects of both.k − ǫ and.k − ωmodels. Specifically,

from the .k − ω model, this model tries to exploit

• the stability in handling flow areas close to the walls due to the low Reynolds

number formulation;

8.2 k − ω SST (Shear Stress Transport) Model 249

• the ability to correctly describe flows characterised by the presence of adverse

pressure gradients.

From the .k − ǫ model, this model tries to exploit:

• the ability to correctly process turbulent flows in areas far from the walls;

• the insensitivity to the value set for the undisturbed flow.

In the .k − ω BSL model, starting from the .k − ω model, the Eq. 8.7 for . ω is initially

modified as

.

∂ρω

∂t
+ ∇ · (ρvω) = ∇ ·

(

μe f f,ω∇ω
)

+ Cα2

ω

k
Pk − Cβ2ρω2 + 2σω2

ρ

ω
∇k · ∇ω

(8.8)

also modifying the value of the constants as follows: .Cα2 = 0.4404, .Cβ2 = 0.0828,

.σk2 = 1, .σω2 = 0.856, .Prt = 0.9. Subsequently, a weighting function .F1 is intro-

duced to obtain a weighted average .�̃ of the value of the constants according to

the

. �̃ = F1�1 + (1 − F1)�2

where .�1 is the value of the constant assumed in the original .k − ω model and . �2

is the value of the constant assumed in Eq. 8.8. The weighting function .F1 depends

on the distance .d⊥ of the considered point from the nearest wall and it is defined as

. F1 = tanh
(

γ4
1

)

with

. γ1 = Min

[

Max

(√
k

β∗ω (d⊥)
,

500ν

(d⊥)2 ω

)

,
4ρσω2k

C Dkω (d⊥)2

]

and

C Dkω = Max

(

2ρσω2

1

ω
∇k · ∇ω, 10−10

)

and so

. μt = ρ
k

ω
, kt =

μt

Prt

, μe f f,k = μ +
μt

σ̃k

, μe f f,ω = μ +
μt

σ̃ω

,

where .ν = μ/ρ denotes the kinematic viscosity of the fluid. So far, the .k − ω BSL

model has been described from which the .k − ω SST model is derived. The first

difference between these two models concerns the definition of the turbulent viscosity

that is modified in the .k − ω SST model according to

.μt =
ρa1k

Max
(

a1ω,
√
2St F2

)

250 8 Turbulence

in which .a1 = 0.31, .St =
√
St · St is the modulus of the stress defined as . St =

1
2

(

∇v + ∇vT
)

and .F2 is a weighting function defined as

. F2 = tanh
(

γ2
2

)

and γ2 = Max

(

2

√
k

β∗ω (d⊥)
,

500ν

(d⊥)2 ω

)

.

The equations for . k and for . ω are the same as for the BSL model as well as identical

is the use of the function .F1 and its definition. The second difference between the

BSL and the SST model is in the production of turbulent kinetic energy term .Pk in

Eq. 8.6 of . k which is replaced by

. P̃k = Min (Pk, c1ǫ)

in which . ǫ is obtained from Eq. 8.5. The constants used in function .F1 to obtain the

.k − ω SST model constants are

.

Cα1 = 0.5532, Cβ1 = 0.0750, σk1 = 2, σω1 = 2

Cα2 = 0.4404, Cβ2 = 0.0828, σk2 = 1, σω2 = 1.186

The constants of the model are .β∗ = 0.09, .c1 = 10, .Prt = 0.9. Finally, the

expressions of . k and . ω use the effective turbulent viscosities calculated as

. kt =
μt

Prt

, μe f f,k = μ +
μt

σ̃k

, μe f f,ω = μ +
μt

σ̃ω

.

8.3 The Boundary Layer

The momentum boundary layer is that portion of fluid in contact and close to a solid

surface. In this area, in fact, the transition occurs between the undisturbed outer flow

and the much slower one in contact with the solid wall. By convention, the thickness

of the boundary layer (see Fig. 8.6) is defined as the portion of fluid whose velocity

differs by .1% from the velocity of the undisturbed fluid (asymptotic velocity). The

boundary layer originates where the solid surface begins. As shown in Fig. 8.6, the

thickness of the boundary layer is divided into four zones:

• the viscous or laminar sublayer where there are no turbulent fluctuations;

• transitional sublayer;

• the fully turbulent region, also known as the logarithmic law region;

• the outer layer.

Using a specific law, the velocity profile can be described for each of these regions

as the distance from the wall increases. Figure 8.7 shows the graph of the profile

of the average value of the velocity component . u parallel to the wall as a function

8.3 The Boundary Layer 251

Fig. 8.6 Momentum boundary layer

Fig. 8.7 velocity as a function of the distance from the wall in dimensionless units

of the distance .d⊥ from the wall itself. In this graph, the distance from the wall

and the velocity are represented in dimensionless form. The distance from the wall,

shown on a logarithmic scale in Fig. 8.7, is indicated by the symbol .y+ and it is

adimensionalised as:

.y+ =
d⊥uτ

ν
(8.9)

where .uτ is referred to as shear or friction velocity defined as

.uτ =

√

|τw|
ρ

(8.10)

252 8 Turbulence

where .τw is the magnitude of wall shear stress. Denoted by .u+, the adimensional

velocity is defined as:

. u+ =
u

uτ

.

In Fig. 8.7 the result of experimental observations is represented by the curve with

the thicker line, which, in the laminar sub-layer, is in good agreement with the law

.u+ = y+ and appears curvilinear due to the representation on a logarithmic scale.

The laminar sub-layer extends up to a distance equal to .y+ = 5. In the logarithmic

region, characterised by values of .y+ greater than 30, and in the outer layer, the

logarithmic law

.u+ =
1

κ
log(y+) + B =

1

κ
log(Ey+) (8.11)

approximates the data observed experimentally in an acceptable manner. The constant

.κ ≈ 0.4 is known as the von Karman constant, while .B ≈ 5.5 (.E ≈ 0.98) decreases

as the roughness of the wall increases, according to empirical laws. Values of . y+

between 5 and 30 bound the transitional sub-layer, in which both of these laws

approximate the data observed experimentally with lesser accuracy.

A first approach to correctly describe the velocity profile within the boundary

layer involves the use of:

• a large number of cells to allow the correct resolution of strong gradients;

• a turbulence model capable of correctly describing the laminar sub-layer as well

as the logarithmic region (the aforementioned low Reynolds number turbulence

models such as the .k − ω or the .k − ω SST).

In this first approach, the laminar sub-layer is certainly correctly resolved. The

centre of the first cell near the wall must have .y+ ⋍ 1, and there is a real risk of

obtaining computational grids with a number of cells that would result in prohibitive

computational costs.

A second approach for calculating the velocity profile within the boundary layer

involves:

• the use of so-called wall functions, i.e., the modelling of the velocity profile within

the boundary layer rather than its actual resolution;

• the possibility of using a high Reynolds number turbulence model such as the

.k − ǫ model.

In this second approach, the centre of the first cell near the wall must have .y+ > 30.

It is assumed that the velocity profile from the first cell centre near the wall is the

one shown in Fig. 8.7. Based on this assumption, the gradient of velocity normal

to the wall is calculated and consequently the shear stress. This type of approach

allows the use of computational grids with a reduced number of cells. However,

assuming the profile in Fig. 8.7 is not necessarily correct, for example, in the case

of flow separation. Particular attention should be paid to the analysis of .y+ values.

The presence of regions within the computational domain characterised by values

8.4 Wall Functions 253

between 5 and 30 should be avoided due to the low reliability of wall functions

resulting from the direct resolution of the laminar sub-layer avoidance.

8.4 Wall Functions

In cases where the approach involving the modelling of the velocity profile within

the boundary layer, rather than its actual resolution, is chosen, particular attention

should be paid to determining the wall velocity gradient. This requires examining its

definition.

. τw ≡ μ

(

∂u

∂y

)

y=0

,

It is clear that the wall shear stress .τw is a function of the wall velocity gradient, as

well as the distance . y from the wall, as shown in Fig. 8.8. In this regard, it is crucial

to determine the value .y+
p of the centre of the first cell near the wall to identify the

zone of the boundary layer in which it is located. With reference to Fig. 8.8 and

formula 8.9, a possible approach involves considering

. y+
p =

uτ

ν
d⊥ =

C1/4
μ

√

kp

ν
yp

In this context, .kp represents the turbulent kinetic energy calculated at the cell centre

. p, based on the corresponding velocity value. The threshold values for this quantity

typically range between 11 and 12: lower values indicate that the cell centre . p lies

within the laminar sub-layer, while higher values suggest that it is located in the

transitional sub-layer or the logarithmic region. Figure 8.8 illustrates this.

• The centre . p of the cell, whose extension is represented by the shaded area;

• The centre of the face on which the no-slip boundary condition is applied;

• The value of the velocity component . u parallel to the wall at the cell centre,

obtained from the application of the equation of conservation of momentum;

• The real velocity profile, represented by the continuous thin line;

• The velocity gradient at the centre of the wall face (.y = 0) as the slope of the seg-

ment with a dotted line, considering a simple linear approximation of the velocity

values at the cell centre and at the wall face centre. Assuming a stationary wall,

the velocity at the wall face centre is zero;

• The velocity gradient calculated at the centre of the wall face (.y = 0) as the slope

of the tangent—dashed segment—to the velocity profile at the centre of the wall

face;

• The difference between the value of the gradient calculated with the linear approx-

imation and the value of the gradient obtained as a tangent to the velocity profile,

represented by a thick continuous line.

From Fig. 8.8 it is therefore evident that

254 8 Turbulence

Fig. 8.8 Wall velocity

gradient

. τw ≡ μ

(

∂u

∂y

)

y=0

�= μ
�u

�y
= μ

u p

yp

.

Choosing the linear approximation to express of the gradient of wall velocity as

done for all of the interior faces of the computational domain, two approaches are

possible:

• The addition of a specific source term in the equation of conservation of

momentum;

• Considering a different value of viscosity .μe (effective viscosity) to correct the

error made in the calculation of the wall velocity gradient.

8.5 Distance from the Wall to the Centre of the First Cell

Near the Wall

During the grid construction phase, it is necessary to determine the value to use for

the distance from the wall to the centre of the first cell near the wall, so that the

desired .y+ value is obtained once the simulation is completed. Positioning the centre

of the first cell near the wall in such a way that the corresponding .y+ value matches

the desired one is an iterative process and involves the following steps:

1. Initial estimate of the distance from the wall to the centre of the first cells;

2. Execution of the simulation and measurement of the obtained .y+ value. If the

obtained values are acceptable, the process stops; if the obtained values are not

acceptable, proceed to the next step;

3. Modification of the grid to move the centre of the first cells based on the values

obtained in the previous step;

4. Return to step 2.

8.6 Wall Functions in OpenFOAM® 255

In this process, the initial estimate of the distance from the wall to the centre of the

first cell can be obtained by calculating the free-flow Reynolds number for the actual

case.

. Re =
ρu∞L

μ

where .u∞ is the free-stream velocity. Then, calculate the friction coefficient .C f for

a flat plate of infinite dimensions.

. C f = 0.58Re−0.2.

Knowing the value of the friction coefficient, it is possible to calculate the wall shear

stress as follows:

. τw =
1

2
C f ρu2

∞

This allows the deduction of the slip velocity.

. uτ =
√

τw

ρ
.

Finally, from the definition of .y+,

. y+ =
yuτ

ν

it is

. y =
μy+

ρuτ

which is the distance from the wall to the centre of the first cell.

8.6 Wall Functions in OpenFOAM®

Based 4 on the type of calculation performed, the wall functions in OpenFOAM® can

be classified into:

• those for which the value of the quantity (for example, turbulent kinetic energy)

(Table 8.1) is calculated on the wall face of the considered cell;

• those for which the value of the quantity (for example, the dissipative term of the

turbulence model used) is calculated at the centre of the cell.

4 The article on the basis of which the boundary conditions that make use of wall functions

were implemented in OpenFOAM® is Georgi Kalitzin, Gorazd Medic, Gianluca Iaccarino, and

Paul Durbin. Near-wall behavior of RANS turbulence models and implications for wall functions,

“Journal of Computational Physics”, Vol. 204, pp. 265–291, 2005.

256 8 Turbulence

Table 8.1 Summary of wall boundary conditions in OpenFOAM®

.νt nutUWallFunction .νt value based on the value of the

velocity at the centre of the wall cell

nutkWallFunction .νt value based on the value of the

turbulent kinetic energy at the centre of

the wall cell

nutLowReWallFunction The value of .νt is set to zero: to be used

in the case where the centre of the first

wall cell is inside the laminar sub-layer

(low-Re)

nutUSpaldingWallFunction Spalding’s law is used to continuously

describe the value of .νt as .y
+ varies

.k kqRWallFunction Based on the zero-gradient condition, this

boundary condition provides the value of

k, q and R assuming the centre of the wall

cell to be within the logarithmic sub-layer

(high-Re)

kLowReWallFunction Provides the value of . k for the case of the

centre of wall cell within the inertial

sub-layer as well as it is in the viscous

sub-layer

.ǫ epsilonWallFunction Provides the value of . ǫ under the

assumption that the centre of the wall cell

is in the logarithmic sub-layer (high-Re)

epsilonLowReWallFunction Provides the value of . ǫ for the case of the

centre of the wall cell is in the inertial

sub-layer as well as it is in the viscous

sub-layer using an approximate value

of . y+

.ω omegaWallFunction Provides the value of . ω for the case of the

centre of the wall cell is in the inertial

sub-layer as well as it is in the viscous

sub-layer using an approximate value

of . y+

For quantities calculated with the first approach, a conservation equation is also

solved in the wall cell, as in all other cells of the computational domain. For quanti-

ties calculated with the second approach (i.e., by providing the wall function value at

the cell centre), the conservation equation is not solved. Among the quantities whose

value can be calculated through wall functions are turbulent kinetic energy (kqR-

WallFunctions), the dissipative term of the .k − ǫ model (epsilonWallFunctions), the

dissipative term of the .k − ω model (omegaWallFunctions), and turbulent viscosity

(nutWallFunction). The term “LowRe” in the name of the boundary conditions refers

to the ability to correctly handle the case where the centre of the first wall cell is

within the laminar sub-layer of the boundary layer. Due to the decrease in velocity in

this sub-layer, the turbulent Reynolds number is necessarily reduced (see Sect. 8.1.1).

8.6 Wall Functions in OpenFOAM® 257

8.6.1 kqRWallFunctions

The calculation of turbulent kinetic energy at the centre of the cells having at least

one face on the wall is performed by solving a conservation equation using the value

provided by the wall function at the centre of the wall face. The wall functions for

the calculation of turbulent kinetic energy in OpenFOAM® are:

• kqRWallFunction;

• kLowReWallFunction.

8.6.1.1 kqRWallFunction

With this boundary condition, it is assumed that, in the zone between the centre of

the wall cell and the centre of the wall face of the same cell, the turbulent kinetic

energy is constant and equal to the value calculated at the cell centre. In other words,

it is assumed that the cell centre is in the inertial sub-layer of the boundary layer (see

Eq. 20 of the aforementioned article by Kalitzin et al.). This is a Neumann boundary

condition (zero gradient) for turbulent kinetic energy. This boundary condition is

also used for:

• determining the value. q of the square root of turbulent kinetic energy for turbulence

models such as qZeta;

• determining the value of the Reynolds stress tensor . R for turbulence models such

as LRR.

In the case where the qZeta or LRR turbulence models are not used, the zero-gradient

condition can be applied, as for .y+ values between 30 and 50, the turbulent kinetic

energy varies slightly and can therefore be considered constant.

8.6.1.2 kLowReWallFunction

This boundary condition should be used in cases where it is possible that the centre of

the first wall cell is within the viscous sub-layer of the boundary layer. In this case,

the threshold value of .y+ that separates the viscous sub-layer from the turbulent

one is first calculated. The buffer zone is then partly modelled with the linear law

(for .y+ values lower than the limit value) and partly with the logarithmic law (for

.y+ values higher than the limit value). Assuming a von Karman constant of 0.41

and a roughness coefficient of 0.9, the threshold value of .y+ is 11. In this boundary

condition, the shear velocity is initially calculated for each wall cell, assuming that

the cell centre is in the inertial sub-layer, and therefore using the formula:

.uτ = C1/4
μ

√
k

258 8 Turbulence

where . k is the turbulent kinetic energy at the centre of the considered wall cell, while

.Cμ = 0.09. Knowing the value of the shear velocity, it is possible to calculate the

value of .y+ for the cell centre, which is .y+
p =

uτ

ν
d⊥ by definition. The assumption

made about the positioning of the cell centre within the inertial sub-layer for the

calculation of .uτ induces a negligible error in the case where the same cell centre is

instead in the viscous sub-layer. The dimensionless turbulent kinetic energy on the

wall face must now be considered. It is defined as .k+ = k/u2
τ . In the case where the

value of .y+ is higher than the limit value, the following logarithmic law is used:

. k+ =
Ck

κ
log(y+) + Bk .

.Ck = −0.416 and .Bk = 8.366 are two empirical constants. In the case where the

value of .y+ is lower than the threshold value, the following law is used

. k+ =
2400

C2
ǫ2

C f

to calculate the dimensionless turbulent kinetic energy on the wall face, . Cǫ2 = 1.9

is an empirical constant. The following law is used to calculate the term .C f :

. C f =
1

(y+ + C)2
+

2y+

C3
−

1

C2

with .C = 11 as an empirical constant. Knowing the values of .k+ and . uτ , the value

of the turbulent kinetic energy on the wall face is obtained through the:

. k = k+u2
τ

which allows for solving the transport equation for the turbulent kinetic energy within

the wall cell using the same approach applied to all other cells of the computational

domain.

8.6.2 epsilonWallFunctions

For the dissipative term of the .k − ǫmodel in the first wall cell, no transport equation

is solved, and its value at the cell centre is calculated using the value provided by the

wall function. The wall functions for the calculation of the dissipative term of the

.k − ǫ model in OpenFOAM® are:

• epsilonWallFunction;

• epsilonLowReWallFunction.

8.6 Wall Functions in OpenFOAM® 259

8.6.2.1 epsilonWallFunction

In this case, it is necessary to consider the possibility that the generic wall cell has

more than one face on which the wall boundary condition is set. The value of . ǫ at

the cell centre is calculated based on the distance from the centre of the wall faces:

. ǫ =
1

W

W
∑

f =1

(

C3/4
μ k3/2

κy f

)

where .W is the number of faces of the cell on which the wall boundary condition has

been set, . k is the turbulent kinetic energy calculated at the centre of the cell, .y f is the

distance from the cell centre to the considered face, . κ is the von Karman constant,

and .Cμ = 0.09.

8.6.2.2 epsilonLowReWallFunction

Similarly to what is done for the kLowReWallFunction boundary condition, for the

calculation of . ǫ at the centre of the wall cell, this boundary condition distinguishes

the case of .y+ being less than the threshold value from that of .y+ being greater than

the threshold value. In the case of .y+ greater than the limit value, the calculation is

performed using the same formula as in the case of the boundary condition epsilon-

WallFunction. In the case of .y+ being less than the limit value, the calculation is

performed according to the formula below:

. ǫ =
1

W

W
∑

f =1

(

2kν f

y2f

)

which is derived from the expression of .ǫ+ in the laminar sub-layer.

. ǫ+ = 2
k+

(y+)2
.

8.6.3 omegaWallFunctions

This boundary condition is the one to use when using the .k − ω turbulence model

to obtain the value of the dissipative term . ω at the centre of the wall cells. Similarly

to what has already been seen for the term . ǫ, to compute the value of . ω for the wall

cells, the conservation equation is not solved. For this boundary condition, the value

of . ω at the wall face is first calculated using the following formula, relative to the

case in which the cell centre is in the viscous sub-layer:

260 8 Turbulence

. ωvis =
6ν

β1y2

with.β1 = 0.075. Then, the value of . ω at the wall face is calculated using the formula

for the case where the cell centre is in the inertial sub-layer:

. ωlog =
√

k

C
1/4
μ κy

where . y is the distance of the cell centre from the wall face and . k is the turbulent

kinetic energy calculated at the cell centre. Finally, the value at the cell centre is

calculated as a combination of the two previously calculated values:

. ω =
√

ω2
vis + ω2

log.

Similarly to what has already been seen for the case of the epsilonWallFunction

boundary condition, in the case where the considered cell has more than one wall

face, it will be:

. ω =
1

W

W
∑

f =1

ω f .

8.6.4 nutWallFunctions

The value of the wall shear stress is necessary for the solution of the momentum

conservation equation for wall cells. By definition, the wall shear stress is:

. τw ≡ μ

(

∂u

∂y

)

y=0

having indicated with. μ the molecular viscosity, with. u the component of the velocity

parallel to the wall, and with . y the distance from the wall, as shown in Fig. 8.8. As

already seen in Sect. 8.4, it is clear that:

. τw ≡ μ

(

∂u

∂y

)

y=0

�= μ
�u

�y
= μ

u p

yp

.

To compute the gradient of velocity at the face centre of any interior cell, the linear

approximation is used. With the aim of using the same approach for wall cells, it is

possible to

• use a large number of cells to ensure the validity of the linear approximation;

8.6 Wall Functions in OpenFOAM® 261

• consider a different value of viscosity .μe (effective viscosity) to correct the error

made in the calculation of the velocity gradient at the wall face using the value of

the velocity at the centre of the wall cell:

.τw ≡ μ

(

∂u

∂y

)

y=0

= μe f f

u p

yp

. (8.12)

In order to obtain an expression for effective viscosity, we consider the definition of

the dimensionless turbulent kinetic energy .k+:

. k+ =
k

u2
τ

and its expression in the inertial sub-layer:

. k+ =
1

√

Cμ

from which we obtain

. uτ = C1/4
μ k1/2.

By definition, the shear velocity is

. uτ =
√

τw

ρ

from which

. τw = ρu2
τ .

Considering the definition of the dimensionless velocity .u+ = u/uτ , we get . uτ =
u/u+, and therefore, recalling the expression of .u+ in the logarithmic sub-layer:

.τw = ρu2
τ = ρuτ uτ = ρuτ

u

u+ = ρuτ

u p

1
κ
log(Ey+)

(8.13)

in which .u p is the component parallel to the wall of the velocity at the centre of the

wall cell.

Finally, considering Eqs. 8.12 and 8.13, it is

. μe f f

u p

yp

=
ρuτ u p

1
κ
log(Ey+)

that is, in terms of kinematic viscosity,

262 8 Turbulence

. νe f f

u p

yp

=
uτ u p

1
κ
log(Ey+)

from which, recalling the definition . y+ = yuτ/ν

. νe f f = ν + νt =
y+ν

1
κ
log(Ey+)

and so the expression of the turbulent kinematic viscosity is

.νt = ν

(

κy+

log(Ey+)
− 1

)

(8.14)

which is used as a corrective term for the molecular kinematic viscosity to obtain the

correct value of the wall shear stress. Depending on how the value of.y+ is calculated,

in OpenFOAM®, different boundary conditions are available for . νt .

This boundary condition sets the value of the turbulent kinematic viscosity to

zero, and it is the one to use in cases where the grid is fine enough at the wall to

correctly resolve the boundary layer.

8.6.4.1 nutkWallFunction

This boundary condition involves using the value of the turbulent kinetic energy at

the centre of the wall cell to determine the value of .y+, which is used for calculating
the turbulent kinematic viscosity. It is assumed that the centre of the wall cell lies

in the logarithmic sub-layer for the calculation of .y+. By definition, .y+ = yuτ

ν
and

.k+ = k
u2

τ
. In the inertial sub-layer, it will be:

. k+ =
1

√

Cμ

from which, it is

. uτ = C1/4
μ k1/2

and therefore

. y+ =
y

ν
C1/4

μ k1/2.

As done for other boundary conditions, even for this one, the value calculated for . y+

is compared with the .y+ limit value:

• if .y+ is greater than the threshold value, the cell centre is considered to be in

the logarithmic sub-layer and the turbulent kinematic viscosity is calculated using

Eq. 8.14;

8.6 Wall Functions in OpenFOAM® 263

• if .y+ is less than the limit value, the cell centre is considered to be in the viscous

sub-layer and .νt = 0 is assumed.

8.6.4.2 nutUWallFunction

For this boundary condition, the calculation of the turbulent kinematic viscosity

is identical to that of the previous boundary condition. The difference lies in the

calculation of the value of .y+, which this time is based on the value of the velocity at

the centre of the wall cell. Recalling the definition of dimensionless velocity . u+ =
u/uτ , it is assumed here, too, that the centre of the wall cell lies in the logarithmic

sub-layer to calculate the value of .y+:

. u+ =
u

uτ

=
1

κ
log(Ey+)

from which

.

u

yuτ/ν
(y/ν) =

u

y+ (y/ν) =
1

κ
log(Ey+)

and therefore

. y+ log(Ey+) −
κyu

ν
= 0

which can be solved using the Newton-Raphson method to determine .y+ as:

. y+
n+1 = y+

n −
f (y+)

f ′(y+)
= y+

n −
y+

n log(Ey+
n) −

κyu

ν
1 + log(Ey+

n)
=

y+
n +

κyu

ν
1 + log(Ey+

n)

Since the calculation of .y+ is based on the velocity value, this boundary condition

can be used with both high and low Reynolds number turbulence models.

8.6.4.3 nutUSpaldingWallFunction

This boundary condition utilises the law

.y+ = u+ +
1

E

[

eκu+ − 1 − κu+ −
1

2

(

κu+)2 −
1

6

(

κu+)3

]

(8.15)

to approximate the curve that links .u+ and .y+ in all three (laminar, buffer, and

logarithmic) sub-layers of the boundary layer. Since the calculation of .y+ is based

on the velocity value, this boundary condition can be used with both high and low

Reynolds number turbulence models. Considering the definition of .y+ and .u+, it is

264 8 Turbulence

. y+ =
ypuτ

ν
u+ =

u p

uτ

.

Substituting into Eq. 8.15, we obtain an implicit equation in .uτ which, as with the

previous boundary condition, can be solved using the Newton-Raphson method to

obtain . uτ . Then, considering that by definition it is

. uτ =
√

τw

ρ
τw = μe f f

u p

yp

,

we obtain

. νe f f =
u2

τ

u p/yp

.

Keeping in mind that .νe f f = νt + ν, the turbulent kinematic viscosity can be

calculated as

. νt =
u2

τ

u p/yp

− ν.

8.7 Implementation Aspects in OpenFOAM®

Regarding the imposition of wall boundary conditions and specifically the use of

wall functions, attention must be given to the calculation of the turbulent kinematic

viscosity . νt . Indicated by the name patch, any surface to which a boundary condi-

tion is imposed, the file 0/nut will contain the word calculated for all patches,

except for those defined as walls. This is because the turbulent kinematic viscosity

can be calculated as .νt = k/ω everywhere, but on the surface of a wall, where the

velocity is imposed to be zero, the turbulent kinetic energy . k will also be zero, and

consequently .νt will be zero. In the case where the centre wall cell is characterised

by .y+ > 30, this would lead to a significant error in the calculation of the wall shear

stress, defined as

. τw = νe f f

∂u

∂y
.

When the wall is parallel to the x-axis, the error would derive not only from impos-

ing .νt = 0, but also from an incorrect calculation of the velocity gradient normal

to the wall. To overcome this problem, the implementation of the wall function in

OpenFOAM® modifies the value of .νt in order to correct the value of the veloc-

ity gradient normal to the wall, making it consistent with what is predicted by the

curves shown in Fig. 8.7. The wall function normally used in OpenFOAM® is the

one indicated by the word nutkWallFunction, which sets a velocity profile cor-

responding to the logarithmic law for values of .y+ of the wall cell centre greater

8.8 Initial Values of Turbulent Quantities 265

Table 8.2 Example of wall boundary conditions in the case of a boundary layer resolved by the

grid (LowRe)

.νt nutLowReWallFunction or calculated

.k fixedValue=0

.ǫ fixedValue=0 or calculated

.ω fixedValue=0 or calculated

Table 8.3 Example of wall boundary conditions in the case of boundary layer not resolved by the

grid (HighRe)

.νt nutUWallFunction

.k kqRWallFunction or zeroGradient

.ǫ epsilonWallFunction

.ω omegaWallFunction

than 30 and imposes .νt = 0 for values of .y+ less than 11. A different wall func-

tion, indicated by the word nutUSpaldingWallFunction, assigns .νt values

different from zero up to .y+ = 0. In the case of a grid fine enough to resolve the

boundary layer (with the first cell at the wall having .y+ ≤ 1), it is possible to set the

value in the file 0/nut to calculated also for the walls. Consistently, the value

of . k will be set to zero and zeroGradient will be applied for . ω or . ǫ on the walls

(Tables 8.2 and 8.3).

8.8 Initial Values of Turbulent Quantities

Here, the.k − ω turbulence model will be used to solve an incompressible flow, whose

governing equations therefore do not include the term representing density. One

consequence of this choice is that, instead of the dynamic viscosity . μ, the kinematic

viscosity. ν will be considered, making the turbulent kinematic viscosity.νt = k/ω. A

key challenge in setting up a turbulent simulation is defining the initial and boundary

values of the turbulent quantities. The turbulent length scale is a parameter that more

intuitively represents the size of the turbulent vortices than other measures. It is

defined as

.L = C3/4
μ

k3/2

ǫ
(8.16)

with .Cμ = 0.09.

The value of .L is typically estimated empirically. Specifically, it is common

practice to set .L as a percentage of the characteristic dimensions of the problem.

For a fully developed turbulent flow inside a duct, .L = 0.07Dh is used, where . Dh

is the hydraulic diameter. The hydraulic diameter is defined as .Dh = 4A/P , where

266 8 Turbulence

. A is the cross-sectional area of the duct through which the flow passes, and .P is the

perimeter enclosing. A. In the case of flows bounded by a single wall, the length of the

turbulent scales is defined as .L = 0.4Db, where .Db is the boundary layer thickness

at the section where the boundary condition is applied.

The estimation of turbulent kinetic energy . k follows a similar approach to that

used for . L . The turbulent kinetic energy can be expressed in terms of turbulent

intensity . I :

. k =
3

2
(vI)2

where the turbulent intensity is defined as

. I =

√

1
3

(

u
′2 + v

′2 + w
′2
)

√

u2 + v2 + w2

which essentially quantifies velocity fluctuations relative to the average velocity. For

a fully developed turbulent flow inside a duct, .1% < I < 10% is typically assumed,

or an empirical formula can be used.

. I = 0.16Re−1/8

where .Re =
|v| Dh

ν
. For external flows, .0.05% < I < 1% is typically assumed.

Given . L and . k, the following quantity can be determined

. ω = C−1/4
μ

√
k

L
.

Using Eq. 8.16 it is possible to calculate

. ǫ = C3/4
μ

k3/2

L
.

Once the values of. k and. ω have been calculated, it is always advisable to calculate the

corresponding value of the turbulent kinematic viscosity.νt = k/ω to prevent obtain-

ing excessively high values typical of very viscous fluids, such as honey, associated

with velocity magnitudes on the order of 10 m/s, which would necessitate verifying

the calculations and assumptions. Typical values of . νt range between .10−6 and .10−2.

8.9 Large Eddy Simulation (LES) 267

8.9 Large Eddy Simulation (LES)

Unlike the RANS approach, where all turbulent vortices are modelled, the Large Eddy

Simulation (LES) approach distinguishes large turbulent vortices (large eddies) from

smaller ones, resolving the former without modelling and modelling the latter.

The fundamental principle of the LES approach is that large vortices exhibit

characteristics strongly dependent on the type of flow, whereas smaller vortices have

properties common to all flows, making their models universally valid. The scale of

the vortices to be resolved is determined by applying a spatial statistical filter to the

Navier–Stokes equations, yielding the filtered Navier–Stokes equations. In general,

the filtering length scale, denoted by . �, can be computed using various approaches,

including those available in OpenFOAM®:

• cubeRootVol;

• maxDeltaxyz;

• maxDeltaxyzCubeRoot;

• smooth;

• vanDriest;

• Prandtl;

• IDDESDelta.

When the filter is solely determined by the cell size and its resolution capabilities,

it is referred to as the implicit filtering technique. In this approach, the minimum

size of the turbulent vortices is dictated by the cell size. Figure 8.9 illustrates, for a

given discretised computational domain, the maximum size of resolvable turbulent

vortices (largest circle), the minimum resolvable size (intermediate circle), and the

largest vortices that remain unresolved due to the grid resolution (smallest circle).

Modelled vortices are smaller than the grid cells. Sub-Grid Scale (SGS) models refer

to models that account for the contribution of unresolved vortices in describing the

flow. The SGS models available in OpenFOAM® include:

• Smagorinsky;

• kEqn;

• dynamicLagrangian;

• dynamicKEqn;

• WALE (Wall-Adapting Local Eddy-viscosity);

• DeardorffDiffStress.

Fig. 8.9 Dimensions of

turbulent vortices for a given

computational discretised

domain: maximum,

minimum, and maximum

unresolved (modelled) size

268 8 Turbulence

In electronic applications, filters are devices designed to modify a signal by elim-

inating unwanted components. In the LES context, a ‘low-pass’ filter is used, which

leaves unchanged only the harmonics with frequencies lower than the so-called ‘cut-

off frequency’. The initial signal to which the filter is applied represents the temporal

development of quantities, such as pressure or velocity.

A fundamental characteristic of a filter is the function used to represent it. In

three-dimensional LES, the spatial filter function .G(x, y) is defined as a function

of the six spatial coordinates of two points, . x and . y. Applying a filter to a generic

quantity .φ(x, t) yields the filtered version of the same quantity:

. φ(x, t) =
∫

G(x, y)φ(y, t)d3y.

The quantity .φ(x, t) can therefore be decomposed into its filtered part, .φ(x, t), and

the remaining part, .φ′(x, t), called the ‘residue’, expressed as:

.φ′(x, t) = φ(x, t) − φ(x, t). (8.17)

The filtered part is the resolved part (i.e., the turbulent vortices of larger dimen-

sions), while the residue is the modelled part (i.e., the turbulent vortices of smaller

dimensions). It should be noted that:

• the bar over the filtered quantity indicates the calculation of the spatial average

through a three-dimensional integration, unlike the RANS case where the temporal

average is calculated;

• filtering is a linear operation.

A commonly used example of a filter is the rectangular filter (box filter), defined as

follows:

. G(x, y) =

⎧

⎪

⎨

⎪

⎩

1

�3
f or |x − y| �

�

2

0 f or |x − y| >
�

2

where the symbol . � represents the filter width, indicative of the minimum amplitude

of turbulent vortices that should not be eliminated by the filter: in other words, . �

represents the dimension of the smallest resolved turbulent vortices that are not

modelled. The expression commonly used to calculate .� is:

. � = 3
√

�x�y�z

where.�x ,.�y,.�z represent the dimensions of a generic cell in the three-dimensional

grid.

For simplicity, the unfiltered Navier–Stokes equations are presented here in the

absence of momentum sources for a fluid with constant viscosity.

8.9 Large Eddy Simulation (LES) 269

The continuity equation is as follows:

.

∂ρ

∂t
+ ∇ · (ρu) = 0.

The first component of the momentum conservation equation is as follows:

..

∂ρu

∂t
+ ∇ · (ρuu) = μ∇ · (∇u) −

∂ p

∂x
.

The second component of the momentum conservation equation is as follows:

..

∂ρv

∂t
+ ∇ · (ρuv) = μ∇ · (∇v) −

∂ p

∂y
.

The third component of the momentum conservation equation is as follows:

..

∂ρw

∂t
+ ∇ · (ρuw) = μ∇ · (∇w) −

∂ p

∂z
.

Considering the filter function .G(x, y) = G(x − y) and exploiting the linearity

of the filtering operation, we obtain the filtered Navier–Stokes equations for the

incompressible case.

The filtered continuity equation is as follows:

. ∇ · u = 0

which coincides with the continuity equation used in LES.

The first component of the filtered momentum conservation equation is as follows:

.

∂ρu

∂t
+ ∇ · (ρuu) = μ∇ · (∇u) −

∂ p

∂x
. (8.18)

The second component of the filtered momentum conservation equation is as follows:

.

∂ρv

∂t
+ ∇ · (ρuv) = μ∇ · (∇v) −

∂ p

∂y
. (8.19)

The third component of the filtered momentum conservation equation as follows:

.

∂ρw

∂t
+ ∇ · (ρuw) = μ∇ · (∇w) −

∂ p

∂z
. (8.20)

The ability to solve these four equations to obtain the filtered motion field (. u, . v, . w,

. p) depends on the ability to calculate the terms .∇ · (ρuφ) (with .φ = u, v, w), which

can, however, be rewritten as:

270 8 Turbulence

.∇ · (ρuφ) = ∇ · (ρuφ) +
[

∇ · (ρuφ) − ∇ · (ρuφ)

]

. (8.21)

Using Eq. 8.21, it is possible to rewrite Eqs. 8.18, 8.19, 8.20 as:

.

∂ρu

∂t
+ ∇ · (ρu u) = μ∇ · (∇u) −

∂ p

∂x
− [∇ · (ρuu) − ∇ · (ρu u)] (8.22)

.

∂ρv

∂t
+ ∇ · (ρu v) = μ∇ · (∇v) −

∂ p

∂y
− [∇ · (ρuv) − ∇ · (ρu v)] (8.23)

.

∂ρw

∂t
+ ∇ · (ρu w) = μ∇ · (∇w) −

∂ p

∂z
− [∇ · (ρuw) − ∇ · (ρu w)] (8.24)

which are the conservation of momentum equations solved when performing a LES.

• the terms .
∂ρφ

∂t
represent the time variation of the three components of the filtered

momentum;

• the terms .∇ · (ρu φ) and .μ∇ · (∇φ) represent the convective and diffusive fluxes

for the three components of the filtered momentum;

• the terms .− ∂ p

∂x
, .− ∂ p

∂y
, and .− ∂ p

∂z
represent the three components of the gradient of

the filtered pressure.

In the RANS approach, the tensor of Reynolds stresses appears due to the temporal

averaging of values in the Navier–Stokes equations. Similarly, given that .uφ �= u φ,

particular attention must be paid when dealing with the terms . ∇ · (ρuφ) − ∇ · (ρuφ)

resulting from the filtered quantities (spatial averages). It is possible to write the i-th

component of the tensor of stresses deriving from the filtered quantities as

.

[

∇ · (ρuφ) − ∇ · (ρuφ)

]

= ∇ ·
(

ρuφ − ρuφ
)

= ∇ · (ρuui − ρu ui) =

∇ · (ρuiu − ρui u) =
∂ (ρui u − ρui u)

∂x
+

∂ (ρuiv − ρui v)

∂y
+

∂ (ρuiw − ρui w)

∂z
=

∂τi j

∂x j

where

. τi j = ρuiu − ρui u = ρui u j − ρui u j .

The term .τi j is called modelled stress (subgrid-scale stress or subfilter-scale stress)

and represents the transport of momentum due to the interactions among the turbulent

modelled vortices that are not resolved because they are too small compared to the

minimum dimensions imposed by the filter value. Now, considering Eq. 8.17, it can

be written

. φ(x, t) = φ(x, t) + φ′(x, t)

from which

8.9 Large Eddy Simulation (LES) 271

. ρui u j = ρ(ui + u′
i)(u j + u′

j) = ρui u j + ρui u
′
j + ρu′

i u j + ρu′
i u

′
j =

ρui u j +
(

ρui u j − ρui u j

)

+ ρui u
′
j + ρu′

i u j + ρu′
i u

′
j .

Thus, the total modelled stress is as follows:

. τi j = ρui u j − ρui u j =
(

ρui u j − ρui u j

)

+ ρui u
′
j + ρu′

i u j + ρu′
i u

′
j .

The last expression can be further modified by grouping some of its terms:

. τi j = L i j + Ci j + Ri j

• .L i j = ρui u j − ρui u j represents the Leonard stresses, so-called after the name

of the researcher who first discovered the method for the approximate calculation

of this term starting from the filtered quantities. This term contains only filtered

(resolved) quantities and therefore does not require modelling;

• .Ci j = ρui u
′
j + ρu′

i u j represents the stresses due to the interaction between the

modelled and resolved turbulent vortices (cross-stress);

• .Ri j = ρu′
i u

′
j represents the stresses due to the interaction among modelled turbu-

lent vortices. This term, known as unresolved Reynolds stresses (SGS Reynolds

stress), must be modelled using sub-grid/sub-filter scale turbulence models.

8.9.1 Smagorinsky-Lilly Modelling

Due to their small size, unresolved turbulent vortices can be assumed to follow

the Smagorinsky hypothesis of isotropy. As with the Boussinesq hypothesis in the

RANS approach (see Sect. 8.1), the local value of the unresolved Reynolds stresses

is assumed to be proportional to the local value of the deformation velocity tensor

of the filtered (i.e., resolved) part of the flow. Therefore, defining the deformation

velocity tensor (see Sect. 1.2.1) of the filtered part of the flow as

. Si j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

the original Smagorinsky model predicts:

.Ri j = −2μSGS Si j +
1

3
Ri iδi j = −μSGS

(

∂ui

∂x j

+
∂u j

∂xi

)

+
1

3
Ri iδi j (8.25)

in which the proportionality coefficient .μSGS represents the dynamic SGS viscosity;

the term .

1

3
Ri iδi j plays the same role as the term .− 2

3
ρkδi j in Eq. 8.3. In other words,

272 8 Turbulence

the term .
1

3
Ri iδi j allows the sum of the normal stresses—that is, the sum of the

elements of the main diagonal of the tensor of the unresolved Reynolds stresses—

to be equal to the turbulent kinetic energy of the unresolved turbulent vortices. In

common practice, despite the differing nature of its elements, the modelled stress

tensor .τi j is calculated using Eq. 8.25:

..τi j = −2μSGS Si j +
1

3
τi iδi j = −μSGS

(

∂ui

∂x j

+
∂u j

∂xi

)

+
1

3
τi iδi j . (8.26)

To determine the value of the dynamic SGS viscosity .μSGS , we use the Prandtl

mixing length model. The SGS kinematic viscosity is defined as .νSGS = μSGS/ρ,

with dimensions of length squared divided by time (.m2/s). Therefore, the SGS

kinematic viscosity can be expressed, considering only physical dimensions, as the

product of length . l0 and velocity . v0. For length, we could consider a characteristic

length of the turbulent unresolved vortices, which, under the assumption of implicit

LES, will be a fraction (.CSGS) of the dimension .� of the actual cell: .l0 = CSGS�.

Based on dimensional analysis, we can define velocity as the product of length and

spatial derivative. Thus, defining the modulus of the deformation velocity tensor as

.

∣

∣S
∣

∣ =
√

2Si j Si j , the length will always be .l0 = CSGS�, while the spatial derivative

is .
∣

∣S
∣

∣. In conclusion,

. μSGS = ρl0l0
∣

∣S
∣

∣ = ρ (CSGS�)2
√

2Si j Si j .

Theoretical studies by Lilly on the decay rate of turbulent isotropic vortices in the

inertial range of the turbulent energy spectrum have led to the consideration of reli-

able values between .0.17 and .0.21 for the dimensionless constant .CSGS . Subsequent

studies have attributed different values to.CSGS for different types of flow, suggesting

that the behaviour of the ‘small’ turbulent vortices may not be as ‘universal’ as ini-

tially hypothesised. Therefore, there are cases where more sophisticated techniques

are required to model unresolved turbulent vortices.

8.9.2 Evaluation of LES Calculations

Considering that grids with very small cells are much more expensive in terms of

computational costs compared to grids with larger cells at parity of total dimensions of

the computational domain, it is desirable to determine the minimum cell size required

to obtain acceptable LES results. In this context, it is necessary to familiarise oneself

with the concept of energy cascade and related concepts. Given a certain turbulent

vortex, assumed to be circular with diameter . d, it is characterised by a wave number

.κ = 2π/d. From this definition, smaller turbulent vortices will have a higher wave

number or spatial frequency. It should be noted that, although represented by the same

8.9 Large Eddy Simulation (LES) 273

Fig. 8.10 Energy density

spectrum: on the left, the

resolved part; on the right,

the modelled part in a LES

Fig. 8.11 Integral length

scale

symbol, the wave number and turbulent kinetic energy should not be confused. In

Fig. 8.1, the energy density spectrum is shown, which reports the density of turbulent

kinetic energy .E as a function of the wave number. From the analysis of the energy

density spectrum, it is noted that turbulent vortices of larger dimensions—and lower

wave number—are associated with a higher energy density. The area under the curve

of the energy density spectrum represents the total turbulent kinetic energy of the

flow at the considered point. This total turbulent kinetic energy is calculated using

the RANS approach, where all turbulent vortices are modelled and indistinguishable.

In LES, vortices larger than the minimum cell size are resolved, while the remain-

ing vortices are modelled. Considering the energy density spectrum diagram in

Fig. 8.10, part of the total turbulent kinetic energy of the flow is resolved, and part

is modelled. A LES is considered acceptable if at least eighty percent of the total

turbulent kinetic energy is resolved. The energy density spectrum is a local char-

acteristic of the flow. As a consequence, each cell of a computational grid will be

characterised by a specific energy density spectrum. The integral length scale . l0 is

defined in order to obtain a grid that resolves no less than eighty percent of the total

turbulent kinetic energy of the flow at every cell in the computational domain. The

integral length scale represents the dimension . l0 of a turbulent vortex whose energy

is equal to the average value of the total turbulent kinetic energy present at the point

in the computational domain. From a mathematical point of view it will be (Fig. 8.11)

. l0 =

∫ ∞
0

1

k
E(k)dk

∫ ∞
0

E(k)dk
.

To better understand what has been written so far regarding the integral length scale

and the variation of the energy density spectrum as a function of position within the

274 8 Turbulence

computational domain, it is useful to observe Fig. 8.12, in which different zones are

associated with different energy spectra and different integral length scales. Typically,

before performing LES simulations, a RANS calculation is performed to obtain the

distributions of quantities such as turbulent kinetic energy . k and dissipation, which

can be, for example, . ǫ or . ω, depending on the turbulence model used. Knowing these

quantities, it is possible to calculate the value of the integral length scale as

. l0 =
k3/2

ǫ
or l0 =

k1/2

Cμω
.

A suitable data visualisation tool can be used to visualise the integral length scale

distribution over the entire computational domain. .Cμ is the constant used in the case

where the .k − ω turbulence model is used in the RANS simulation. In Fig. 8.12, it

shows that the minimum size necessary to resolve a turbulent vortex of size . l0 varies

depending on the position in the computational domain. Observing Fig. 8.9, it is

noted that at least four cells are required to resolve a turbulent vortex. In other words,

to resolve at least eighty percent of the turbulent kinetic energy in a generic point of

the computational domain characterised by an integral length scale . l0, a reasonable

initial estimate is to consider a grid whose cells have a maximum dimension .� not

exceeding.l0/5. Smaller values of the filter. �will lead to resolving higher percentages

of the total turbulent kinetic energy.

Figure 8.13 illustrates the case of a uniform Cartesian grid. In order to identify

which areas of the computational domain are characterised by an inadequate level

of grid refinement, it is appropriate to define the quantity.

. f =
l0

�
=

k3/2

ǫ�

2 /l0
2 /l0

Fig. 8.12 Variation of the energy density spectrum and integral length scale as a function of position

within the computational domain, and the corresponding cell size as a function of the integral length

scale

8.9 Large Eddy Simulation (LES) 275

Fig. 8.13 Maximum cell

size required to resolve at

least eighty percent of the

turbulent kinetic energy at a

point in the computational

domain characterised by an

integral length scale . l0

in which the value of the filter .� is calculated according to one of the methods

described above. Once the quantity . f is defined, it is possible to visualise its distri-

bution in the computational domain by identifying the areas characterised by . f < 5

as those in which it is necessary to reduce the size of the cells. Once the preparatory

phase, in which a calculation grid is constructed based on the results obtained with

previous RANS simulations, is completed, we now want to evaluate the quality of

the grid based on the results obtained with the LES. The evaluation of aspects such

as the integration time interval or the total number of time intervals performed will

be discussed later. Once again, a possible evaluation criterion is based on the concept

of turbulent kinetic energy, which, for an acceptable LES, must be resolved for not

less than eighty percent of the total at every point in the computational domain (see

Fig. 8.10). The process of evaluating the quality of the grid based on LES results

involves a series of steps. The first consists of observing that, considering for exam-

ple only the velocity, the results of the simulation are the instantaneous values at each

point in the computational domain. Figure 8.14 shows the polygonal chain represent-

ing the modulus .U of the velocity component along one of the three coordinate axes

at a specific point in the computational domain as a function of time. The dashed

curve instead provides the temporal average of these instantaneous values. In order

to obtain the correct average velocity value in each cell, it is necessary to continue the

simulation until reaching a statistically stationary value of the velocity itself. From

this moment on, it will be possible to use the obtained values to calculate the correct

average velocity value.

276 8 Turbulence

Knowing the average velocity field (see Fig. 8.16), it is possible to subtract it from

the instantaneous velocity field (see Fig. 8.15) to obtain the field of instantaneous

velocity fluctuations .u′ (see Fig. 8.17). As these fluctuations were obtained, it is
clear that they are derived from the turbulent vortices resolved by the grid, rather

than those modelled. Observing Fig. 8.2, it is evident that making a temporal average

of . u′ results in a value of exactly zero, as . u′ is the fluctuation component. In formula:

.u′ = 0. Consequently, it follows that .u′ · u′ = 0, while .u′u′ �= 0.

What has been considered so far is only one of the three components of velocity.

Therefore, it will be necessary to consider all three components, namely

. u′ = U − U , v′ = V − V , w′ = W − W .

Considering that the kinetic energy per unit mass is generally defined as half the

product of the velocity vector with itself, to calculate the kinetic energy of the fluc-

tuations or the turbulent kinetic energy, it will be necessary to consider the sum of

the products of the various components. The turbulent kinetic energy resolved by the

grid will be

. kres =
1

2

(

u′u′ + v′v′ + w′w′
)

or, equivalently

.kres =
1

2

(

(u′)2 + (v′)2 + (w′)2
)

. (8.27)

To better understand how to obtain this value if OpenFOAM® is used, it is necessary to

consider that the nine possible products between the components of the instantaneous

velocity fluctuation

. u′u′, u′v′, u′w′, v′u′, v′v′, v′w′, w′u′, w′v,′ w′w′

Representing the instantaneous Reynolds stresses and their time average value, the

Reynolds stress tensor per unit mass is organised in matrix form as follows:

Fig. 8.14 Velocity value

obtained from an LES at a

point in the computational

domain and its average value

over time

t0

U

U

8.9 Large Eddy Simulation (LES) 277

Fig. 8.15 Example of instantaneous velocity field

Fig. 8.16 Example of average velocity field

Fig. 8.17 Example of instantaneous velocity fluctuation field

.

Ri j

ρ
=

⎡

⎣

u′u′ u′v′ u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

⎤

⎦ .

Considering that

. u′v′ = v′u′ u′w′ = w′u′ v′w′ = w′v′,

we obtain the symmetric tensor

.

Ri j

ρ
=

⎡

⎣

u′u′ u′v′ u′w′

v′v′ v′w′

w′w′

⎤

⎦

The elements of this tensor have units of measure .m2/s2.

Among the various results of an LES performed using OpenFOAM®, the values

of this tensor will be contained in the file uPrime2Mean. Taking advantage of the

symmetry of this tensor and to reduce the computer memory usage required, only

six, and not nine, components will be stored. Once the values of the Reynolds stress

tensor are obtained, it is possible to calculate the value of the turbulent kinetic energy

resolved by the grid using Eq. 8.27. Data visualisation software typically allows cre-

ating new quantities from those initially available. Therefore, a new quantity can

be defined in the Data visualisation software as 0.5*(UPrime2Mean_XX2̂ +

UPrime2Mean_YY2̂ + UPrime2Mean_ZZ2̂). As an example, Fig. 8.18 shows

278 8 Turbulence

the case in which the data analysis software is Paraview®. In the same figure, high-

lighted at the bottom, there is a button to choose from the six possible components

of the tensorial field UPrime2Mean. Once the turbulent kinetic energy resolved

by the grid is available, we aim to determine the value of the modelled turbulent

kinetic energy .ksgs over the entire computational domain. In other words, we seek to

determine the value of turbulent kinetic energy derived from turbulent vortices that

have dimensions smaller than those minimum necessary for the grid to resolve them.

In the case of a LES performed using OpenFOAM®, such values are written in the

file k. It is then possible to analyse the distribution of two distinct fields—.kres and

.ksgs—as shown in Figs. 8.19 and 8.20.

Noting .kres and .ksgs it is possible to define the new field

.

kres

kres + ksgs

Representative of the percentage of resolved turbulent kinetic energy relative to the

total turbulent kinetic energy, as shown in Fig. 8.21. Zones of the computational

domain characterised by values lower than eighty percent will need to undergo grid

refinement. It is useful to remind that reductions in the minimum cell size lead to an

increase in the percentage of resolved turbulent kinetic energy compared to the total

turbulent kinetic energy.

8.9 Large Eddy Simulation (LES) 279

Fig. 8.18 Calculation of the resolved turbulent kinetic energy through paraview

280 8 Turbulence

Fig. 8.19 Example of .kres distribution in a computational domain

Fig. 8.20 Example of .ksgs distribution in a computational domain

Fig. 8.21 Example of the distribution of the percentage of resolved turbulent kinetic energy

compared to the total turbulent kinetic energy in a computational domain

Bibliography

Anderson, J. (2009). Governing equations of fluid dynamics. In J. F. Wendt (Ed.), Computational

fluid dynamics (pp. 15–51). Berlin Heidelberg: Springer.

Blazek, J. (2005). Computational fluid dynamics: Principles and applications. Elsevier Science.

Ciofalo, M. (2021). Thermofluid dynamics of turbulent flows: Fundamentals and modelling.

Springer International Publishing.

Davidson, P. (2015). Turbulence: An introduction for scientists and engineers. Oxford University

Press.

Durran, D. (2010). Numerical methods for fluid dynamics: With applications to geophysics. New

York: Springer.

Ferziger, J., Perić, M., & Street, R. (2019). Computational methods for fluid dynamics. Springer

International Publishing.

Greenshields, C. (2023). Openfoam v11 user guide. The OpenFOAM Foundation. https://doc.cfd.

direct/openfoam/user-guide-v11

Greenshields, C., & Weller, H. (2022). Notes on computational fluid dynamics: General principles.

CFD Direct Ltd.

Holzmann, T. (2019). Mathematics, numerics, derivations and openfoam(r). Holzmann CFD.

Jasak, H. (1996). Error analysis and estimation for the finite volume method with applications to

fluid flows. Imperial College London (University of London).

Kee, R., Coltrin, M., Glarborg, P., & Zhu, H. (2018). Chemically reacting flow: Theory, modeling,

and simulation. Wiley.

Maliska, C. (2023). Fundamentals of computational fluid dynamics: The finite volume method.

Springer International Publishing.

Maric, T., Hpken, J., & Mooney, K. (2014). The openfoam technology primer. Stan Mott.

Mazumder, S. (2015). Numerical methods for partial differential equations: Finite difference and

finite volume methods. Elsevier Science.

Moore, R. (2017). Fluids, waves and optics. CreateSpace Independent Publishing Platform.

Moukalled, F., Mangani, L., & Darwish, M. (2015). The finite volume method in computational

fluid dynamics: An advanced introduction with openfoam and matlab. Springer International

Publishing.

Mueller, J. (2020). Essentials of computational fluid dynamics. CRC Press.

Pulliam, T., & Zingg, D. (2014). Fundamental algorithms in computational fluid dynamics. Springer

International Publishing.

Quartapelle, L., & Auteri, F. (2013a). Fluidodinamica comprimibile. CEA.

Quartapelle, L., & Auteri, F. (2013b). Fluidodinamica incomprimibile. CEA.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer

Nature Switzerland AG 2025

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8

281

https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doc.cfd.direct/openfoam/user-guide-v11
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8
https://doi.org/10.1007/978-3-031-88957-8

282 Bibliography

Quarteroni, A., Saleri, F., & Gervasio, P. (2017). Calcolo scientifico: Esercizi e problemi risolti con

matlab e octave. Springer Milan.

Rodriguez, S. (2019). Applied computational fluid dynamics and turbulence modeling: Practical

tools, tips and techniques. Springer International Publishing.

Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Society for Industrial; Applied

Mathematics. for Industrial; Applied Mathematics.

Salsa, S. (2016). Equazioni a derivate parziali: Metodi, modelli e applicazioni. Springer Milan.

Sasoh, A. (2020). Compressible fluid dynamics and shock waves. Springer Nature Singapore.

Toro, E. (2009). Riemann solvers and numerical methods for fluid dynamics: A practical introduc-

tion. Berlin Heidelberg: Springer.

Trottenberg, U., Oosterlee, C., & Schuller, A. (2001). Multigrid methods: Basics, parallelism and

adaptivity. Elsevier Science.

Versteeg, H., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: The

finite volume method. Pearson Education Limited.

	Preface
	Contents
	1 Preliminary Concepts
	1.1 Differential Operators
	1.1.1 Gradient
	1.1.2 Divergence
	1.1.3 Laplacian
	1.1.4 Curl
	1.1.5 Vector and Tensor Notation
	1.1.6 Gauss (or Divergence or Ostrogradskij) Theorem

	1.2 Fluid Mechanics
	1.2.1 Strain Rate Tensor
	1.2.2 Q or Okubo-Weiss Criterion
	1.2.3 Stress Tensor
	1.2.4 Constitutive Equations

	1.3 Differential Equations with Physical Applications
	1.3.1 Generalities on Partial Differential Equations
	1.3.2 Mathematical Classification of Linear and Quasi Linear Partial Differential Equations
	1.3.3 Transport Equation
	1.3.4 Wave Equation
	1.3.5 Heat Equation

	1.4 Gasdynamics
	1.4.1 Mechanical Waves
	1.4.2 Acoustic Waves Equation
	1.4.3 One-Dimensional Pressure Waves
	1.4.4 Acoustic Waves Described by Displacement from the Equilibrium Position of the Transmitting Medium
	1.4.5 Bulk Modulus

	1.5 Numerical Calculus
	1.5.1 Taylor Series Expansion and Accuracy
	1.5.2 Mean Value Approximation
	1.5.3 Derivatives Approximation
	1.5.4 Explicit and Implicit Methods
	1.5.5 Fixed Point Iteration

	2 Governing Equations of Fluid Dynamics
	2.1 Control Volume
	2.2 Substantial Derivative
	2.3 The Physical Meaning of the Velocity Divergence
	2.4 The Continuity Equation
	2.5 Conservation of Momentum
	2.5.1 Newtonian Fluids

	2.6 Energy Conservation Equation
	2.7 Considerations on the Governing Equations
	2.8 Further Insights on the Conservative Form
	2.9 General Transport Equation

	3 The Finite Volume Method
	3.1 Convective-Diffusive Fluxes
	3.1.1 Linear Interpolation or Central Differencing
	3.1.2 Properties of Discretisation Schemes
	3.1.3 Assessment of the Central Scheme for Convection-Diffusion Cases
	3.1.4 Upwind Scheme or Upwind Differencing (UD)
	3.1.5 Linear Upwind Scheme
	3.1.6 QUICK Scheme (Quadratic Upwind Interpolation for Convective Kinetics)
	3.1.7 Total Variation Diminishing (TVD) Schemes
	3.1.8 The Case of Unstructured Grids

	3.2 Reconstruction
	3.2.1 Essentially Non Oscillatory (ENO) Schemes
	3.2.2 Weighted Essentially Non Oscillatory (WENO) Schemes

	3.3 Interpolation of Diffusive Fluxes
	3.4 Calculation of the Gradient at the Cell Centre
	3.4.1 Calculation of the Gradient on the Centroid of the Faces

	3.5 Calculation of the Time Derivative or Transient Term
	3.5.1 Implicit Euler Scheme
	3.5.2 Crank-Nicolson Scheme or Central Difference Profile
	3.5.3 Backward Scheme or Second Order Upwind Euler

	4 Linear Systems and Their Solution
	4.1 The Jacobi Method
	4.2 The Gauss-Seidel Method
	4.2.1 Numerical Example

	4.3 Diagonal Dominance and Scarborough Criterion
	4.4 Residue and Correction/Error
	4.5 Stopping Criteria
	4.6 LU Factorisation Method
	4.6.1 Preconditioning
	4.6.2 The Gradient and Conjugate Gradient Methods

	4.7 Multigrid Methods
	4.7.1 The Smoothing Property of Iterative Methods
	4.7.2 Geometric Multigrid
	4.7.3 V-Cycle
	4.7.4 Algebraic Multigrid
	4.7.5 Application Example

	5 Pressure-Velocity Coupling
	5.1 The Staggered Grid
	5.2 Conservation of Momentum
	5.3 The SIMPLE Algorithm
	5.3.1 Numerical Example of Application of the Pressure Equation of Correction
	5.3.2 Example of Application of the SIMPLE Algorithm

	6 OpenFOAM®
	6.1 Discretisation Schemes
	6.1.1 Temporal Discretisation Schemes
	6.1.2 Discretisation Schemes of the Convective Terms
	6.1.3 Gradient Discretisation Schemes
	6.1.4 Discretisation Schemes of Laplacian or Diffusive Terms

	6.2 Examples of Discretisation Scheme Settings
	6.2.1 Generic Setting
	6.2.2 Accurate Setting
	6.2.3 Stable Setting

	6.3 Linear Solvers
	6.3.1 Geometric-Algebraic Multi-grid (GAMG)

	6.4 Pressure-Velocity Coupling
	6.4.1 Implementation of SIMPLE and PISO in OpenFOAM®
	6.4.2 The Courant Number

	6.5 Residual and Tolerances

	7 Boundary Conditions
	7.1 Boundary Conditions for Incompressible Flow
	7.1.1 The Relative Nature of Pressure
	7.1.2 Inlet
	7.1.3 Outlet

	7.2 Boundary Conditions for Compressible Flow
	7.2.1 Subsonic Inlet
	7.2.2 Supersonic Inlet
	7.2.3 Subsonic Outlet
	7.2.4 Supersonic Outlet

	7.3 Boundary Conditions Available in OpenFOAM®
	7.3.1 Imposition of the Value and Gradient of a Quantity at the Boundary
	7.3.2 Inlet-Outlet

	8 Turbulence
	8.1 Reynolds Averaged Navier–Stokes Approach
	8.1.1 Standard k-\epsilonk-ε Model
	8.1.2 k-\omegak-ω Model

	8.2 k-\omegak-ω SST (Shear Stress Transport) Model
	8.3 The Boundary Layer
	8.4 Wall Functions
	8.5 Distance from the Wall to the Centre of the First Cell Near the Wall
	8.6 Wall Functions in OpenFOAM®
	8.6.1 kqRWallFunctions
	8.6.2 epsilonWallFunctions
	8.6.3 omegaWallFunctions
	8.6.4 nutWallFunctions

	8.7 Implementation Aspects in OpenFOAM®
	8.8 Initial Values of Turbulent Quantities
	8.9 Large Eddy Simulation (LES)
	8.9.1 Smagorinsky-Lilly Modelling
	8.9.2 Evaluation of LES Calculations

	Appendix Bibliography
	

