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Preface 

In the hope that it will prove to be a valuable resource for both teaching and learning, 

this volume is designed for undergraduate and graduate students in Engineering who 

are exploring computational fluid dynamics for the first time as a tool for analysing 

fluid machines and devices. 

The main objective is to facilitate a gradual and effective learning process, 

significantly reducing the time needed to acquire the minimum level of knowledge 

required to produce acceptable results for most general interest case studies. For 

detailed insights, readers are referred to the texts cited in the bibliography—and the 

bibliographic references contained therein—whose reading and understanding will 

certainly be more straightforward once familiarity with the material presented here 

is gained. 

To ensure the topics covered are both interesting and comprehensible, the authors 

have, in certain cases, prioritised clarity of exposition over mathematical rigour, 

continuously referring to the physical meaning of the mathematical formulas consid-

ered. Researchers and engineers will also find in this book a collection of basic 

concepts essential for the correct configuration of any fluid dynamics simulation 

software. 

To enable as many readers as possible to put into practice the content presented in 

this volume, the authors have chosen to focus on the free and open-source software 

OpenFOAM®, which is supported by a large and vibrant community of developers 

and users. Note, however, the not insignificant difficulty in accessing and using 

the related manuals; this volume represents the result of painstaking research and 

the collection of information scattered across numerous sources, including books, 

academic articles, multimedia notes published online, specialized forums, and more. 

The initial part of this text (Chap. 1) aims to provide the necessary tools for 

those wishing to perform fluid dynamic analysis using finite volume methods for 

complex systems such as fluid machines. This is followed by an introduction to the 

main governing equations of fluid dynamics (Chap. 2), which represent the core 

of the physical description for the practical problems under study. An extensive yet 

pragmatic description of the finite volume approach is then provided, starting with the 

description of the main discretization methods (Chap. 3), moving on to the numerical

v
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methodologies used to solve the systems of equations generated in these processes 

(Chap. 4), and concluding with the pressure-velocity coupling problems (Chap. 5). 

Having acquired the necessary knowledge to undertake practical case analysis, the 

computational code OpenFOAM® is introduced (Chap. 6), with its structure and 

potential described through practical examples of setup. The book concludes with a 

discussion on issues related to setting boundary conditions in various cases (Chap. 7) 

and the turbulence closure problem (Chap. 8). 

Bari, Italy Giovanni Caramia 

Elia Distaso
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Chapter 1 

Preliminary Concepts 

Embarking on the study of finite volume methods and their application to the conser-

vation equations governing fluid dynamics requires mastering certain fundamental 

concepts. Therefore, this chapter provides an essential overview covering differ-

ential operators (notation, definition, and their physical significance), elements of 

fluid mechanics, generalities and physical applications of differential equations, ele-

ments of gas dynamics useful for studying acoustic waves, and finally, basic concepts 

related to numerical computation. The approach is pragmatic and does not claim to 

be exhaustive. The aim is to provide the reader with the necessary tools to be effec-

tively utilised in subsequent chapters. From another perspective, this chapter serves 

as an initial reference for delving deeper into these concepts through the reading and 

study of more specific texts. 

1.1 Differential Operators 

1.1.1 Gradient 

The gradient is a differential operator denoted by the word .grad or the symbol . ∇, 

called “nabla”. The gradient of a scalar function . f of three variables .(x1, x2, x3) is a 

vector that, at each point in space, allows the calculation of the directional derivative 

of . f in the direction of a generic unit vector v through the dot product between v 

and the gradient of the function at that point. In the case of an orthonormal Cartesian 

reference system, the gradient of . f (x1, x2, x3) is the vector whose components are 

the first partial derivatives evaluated at the point: 

. grad f = ∇ f =
∂ f

∂x1
i +

∂ f

∂x2
j +

∂ f

∂x3
k
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2 1 Preliminary Concepts

where i, j, k represent the unit vectors along the coordinate axes. Using vector 

notation, . ∇ can be defined as the vector whose components are the partial derivative 

operators along the coordinate axes. The gradient will then be the product between 

the vector .∇ and the scalar function . f . In formulas:  

. ∇ f =

⎛

⎜

⎜

⎜

⎜

⎝

∂
∂x1

∂
∂x2

∂
∂x3

⎞

⎟

⎟

⎟

⎟

⎠

f =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∂ f

∂x1

∂ f

∂x2

∂ f

∂x3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The gradient of the scalar function . f is a vector whose direction is that of the 

maximum variation of the function itself, and its magnitude provides the measure of 

such variation. For example, considering.x1 = x and.x2 = y, below is the calculation 

of the gradient of the scalar function . f (x, y) = x2 + y2 + b, whose plot is shown 

in Fig. 1.1, along with the vector field formed by its gradient. 

. ∇ f =

⎛

⎜

⎜

⎜

⎝

∂ f

∂x

∂ f

∂y

⎞

⎟

⎟

⎟

⎠

= ∇ f =
(

2x

2y

)

.

Continuing to observe Fig. 1.1, it can be noticed that the vector field corresponding 

to the gradient of . f develops in the xy-plane. Moreover, as one moves away from 

the origin, there is an increase in both the function . f and its gradient values. 

Fig. 1.1 Representation of the scalar function . f (x, y) = x2 + y2 + b together with its gradient
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The gradient of a vector function .f = ( fx , fy, fz) is defined as: 

. ∇f =

⎛

⎜
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The transpose matrix of the gradient of a vector function is: 

. J = (∇f)T =

⎛

⎜

⎜

⎜

⎜

⎜
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⎜
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The transpose matrix of the gradient of a vector function is called the Jacobian 

matrix, while the determinant of the Jacobian matrix is referred to as the Jacobian. 

1.1.2 Divergence 

The divergence is a differential operator indicated by the symbol.div or by the symbol 

.∇·. The divergence of a three-dimensional vector .b = (b1, b2, b3) is 

.div b = ∇ · b =
3
∑

i=1

∂

∂xi
bi =

∂b1

∂x1
+

∂b2

∂x2
+

∂b3

∂x3
(1.1) 

where .bi are the components of the vector . b and .xi are the coordinates of the chosen 

reference system. From a mathematical perspective, the application of the divergence 

differential operator to a vector can be thought of as the dot product between the 

operator .∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

and the vector . b. 

To better understand the physical meaning of this differential operator, one can 

consider the velocity field of a fluid in motion in its vector representation, as indicated 

in Fig. 1.2, where at a limited number of points, the representative vector of the fluid 

velocity is drawn. In the same figure, the curve delimiting a generic area inside which 

it is desired to understand whether the fluid is accumulating or not is also depicted.
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Fig. 1.2 Vector 

representation of a fluid 

motion field 

For simplicity, this area can be considered as a circle centred at the origin of the 

axes, as shown in Figs. 1.3 and 1.4, where a flow field is visualised. In Fig. 1.3, the  

fluid tends to move particles away from the origin, while in Fig. 1.4, it tends to move 

particles towards the origin. In Fig. 1.3, it is said that the function representative of 

the vector field has positive divergence at the origin, and the origin is called a source. 

In Fig. 1.4, it is said that the function representative of the vector field has negative 

divergence at the origin, and the origin is called a sink. Considering a generic area in 

space where the function is defined, it will be said that for this area, the divergence 

is: 

• Positive: if the balance of particles crossing its boundary is in favour the particles 

exiting the area (dispersion of particles). 

• Negative: if the balance of particles crossing its boundary is in favour of the 

particles entering the area (accumulation of particles). 

• Zero: if the number of particles entering equals the number exiting (particle 

conservation). 

Therefore, divergence can be interpreted as an indicator of the extent to which 

particles tend to converge or spread (diverge) from a generic area in space. 

As an example, let’s calculate the divergence of the vector function. V = (xy, y2 −
x2), whose representation is shown in the Fig. 1.5. Applying the definition (1.1), it is 

.div V = ∇ · V =
2
∑

i=1

∂

∂xi
Vi =

∂v1

∂x1
+

∂v2

∂x2
=

∂xy

∂x
+

∂(y2 − x2)

∂y
= y + 2y = 3y.
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Fig. 1.3 Positive divergence 

Fig. 1.4 Negative 

divergence
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Fig. 1.5 Vector 

representation of the 

function . V

From this, it is observed that the divergence is zero on the x-axis, always positive 

in the positive y-axis semi-plane, and always negative in the negative y-axis semi-

plane. For further insights into the physical meaning of divergence, refer to Sect. 2.3. 

Finally, it is noticed that the divergence of the product of a vector . b by a scalar 

function .φ (x1, x2, x3) can be expressed as: 

. ∇ · (bφ) = b · ∇φ + φ∇ · b

where the symbol .∇φ denotes the gradient vector of . φ, defined as: . ∇φ ≡
(

∂φ
∂x1

,
∂φ
∂x2

,
∂φ
∂x3

)

. 

1.1.3 Laplacian 

The Laplace operator, or Laplacian, is a second-order differential operator defined as 

the divergence of the gradient of a function in Euclidean space. The most significant 

way to denote the Laplacian is using the vector differential operator .∇2. The Laplace 

operator applied to a function . f (x) in Euclidean space is the divergence of the 

gradient of . f : 

.∇2 f (x) = ∇·∇ f (x),
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where .x = (x1, x2, . . . , xn) represents the set of coordinates. The Laplace operator 

in Cartesian coordinates, in an .n-dimensional space, is given by: 

. ∇2 =
∂2

∂x21
+ · · · +

∂2

∂x2n
=

n
∑

i=1

∂2

∂x2i
.

Given a vector function. F defined in a three-dimensional Euclidean space, the Lapla-

cian is defined as the vector whose components are the scalar Laplacians of each of 

the component functions of . F: 

. ∇2
F =

{

∇2Fx ,∇2Fy,∇2Fz

}

.

To better understand the meaning of this operator, consider the function . f (x, y) =
sin(x) cos(y) + 2, whose graph is represented in Fig. 1.6 along with the vector field of 

its gradient. In Fig. 1.7, only the gradient.∇ f is represented. Calculating the Laplacian 

of . f (x, y) involves computing the divergence of the vector field of the gradient of 

. f (x, y). Referring to the discussion above regarding divergence, the regions with 

positive divergence (where vectors diverge) and the regions with negative divergence 

(where vectors converge) are evident in Fig. 1.7. 

Observing Fig. 1.6, it is noted that the regions with positive divergence of the 

gradient correspond to a minimum of the function . f (x, y), while the regions with 

negative divergence of the gradient correspond to a maximum of. f (x, y). The Lapla-

cian can therefore be thought of as the equivalent of the second derivative in the case 

of a single-variable function in determining whether a point with zero first derivative 

is a maximum or a minimum. In other words, the Laplacian provides the sign of 

concavity and the “measure” of curvature. 

Fig. 1.6 Representation of the function . f (x, y) = sin(x) cos(y) + 2 and the corresponding 

gradient function
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Fig. 1.7 Representation of 

the gradient of the function 

showed in Fig. 1.6 

1.1.4 Curl 

The curl is a differential operator indicated by the symbols .curl, rot , or .∇×. From a  

mathematical perspective, the application of the curl differential operator to a generic 

vector . b can be thought of as the cross product between the differential operator 

.∇ =
(

∂
∂x1

, ∂
∂x2

, ∂
∂x3

)

and the vector . b: 

. ∇ × b =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x1

∂

∂x2

∂

∂x3
b1 b2 b3

∣

∣

∣

∣

∣

∣

∣

that is 

. ∇ × b =
(

∂b3

∂x2
−

∂b2

∂x3

)

i +
(

∂b1

∂x3
−

∂b3

∂x1

)

j +
(

∂b2

∂x1
−

∂b1

∂x2

)

k

where i, j, k represent the unit vectors along the coordinate axes, and .bi represent 

the component functions of the vector b. To better understand the physical meaning 

of this differential operator, consider the velocity field of a fluid in motion in its 

vector representation, as indicated in Fig. 1.8, where at a limited number of points, 

the representative vector of the fluid velocity is drawn. In the same figure, circles 

are drawn. Near the circle positioned on the positive x-semiaxis, the vector field 

rotates counterclockwise; in this case, it is said that the curl is positive. Near the 

circle positioned on the positive y-semiaxis, the vector field rotates clockwise: in
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Fig. 1.8 Vectorial 

representation of a fluid 

motion field 

this case, it is said that the curl is negative. The circle positioned at the origin of the 

axes is near four vectors oriented two by two clockwise and counterclockwise: in 

this case, it is said that the curl is zero. The curl can therefore be interpreted as an 

indicator of the extent to which particles tend to rotate around a point, clockwise or 

counterclockwise, in a generic area of space. The derivation of the curl formula from 

its physical meaning is simpler in the two-dimensional case. Let’s consider a vector 

function b defined as: 

. b(x, y) =
[

P(x, y)

Q(x, y)

]

where .P(x, y) is the function describing the behaviour of the component along the 

x-direction of the function b, .Q(x, y) is the function describing the behaviour of 

the component along the y-direction of the function b. Considering what has been 

said about Fig. 1.8, to obtain a positive value of the curl and considering the area of 

interest centred at the origin, the representative vectors of the function b should be 

oriented as in Fig. 1.9. In particular, the two vectors positioned on the x-axis—on 

the circumference centred at the origin of Fig. 1.8—would not have any component 

along the same axis, and therefore the vector function b would reduce to only the 

value of the scalar function. Q; in this case, the derivative of.Q with respect to. x would 

be positive because it would change from a negative value at negative abscissas to a 

positive value at positive abscissas. Correspondingly, the derivative of. P with respect 

to . y would be negative. Expressing what is represented in Fig. 1.9 into mathematical 

formulas, the curl can be defined as:
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Fig. 1.9 Components of 

vector function b near the 

origin 

. curl b =
∂Q

∂x
−

∂P

∂y

where the negative sign is inserted to ensure that the curl is positive (i.e., counter-

clockwise rotations) when the derivative of. P with respect to. y is negative. Assuming 

the vector field shown in Fig. 1.8 to be described by the vector function 

. b(x, y) =
[

P(x, y)

Q(x, y)

]

=
[

y3 − 9y

x3 − 9x

]

,

the curl is 

.curl b =
∂Q

∂x
−

∂P

∂y
= 3x2 − 9 −

(

3y2 − 9
)

= 3x2 − 3y2. (1.2) 

Willing to calculate the value of the curl at the point with coordinates.(x = 3, y = 0), 

we obtain the value 27, which is consistent—in terms of sign—with the fact that, 

referring to Fig. 1.8, the curl at the circumference centred at the point . (x = 3, y = 0)

has a positive sign. The same considerations apply to the value of the curl at the points 

with coordinates .(x = 0, y = 3) and .(x = 0, y = 0). The vector field represented 

in Fig. 1.8 can be depicted in a three-dimensional reference system, as shown in 

Fig. 1.10. Using the right-hand rule, we can associate a direction and orientation to 

the calculated curl value using Eq. 1.2, as illustrated in the same Fig. 1.10. It is now  

possible to redefine the function b as 

.b(x, y, z) =

⎡

⎣

P(x, y, z)

Q(x, y, z)

R(x, y, z)

⎤

⎦ =

⎡

⎣

y3 − 9y

x3 − 9x

0

⎤

⎦ .
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Fig. 1.10 Representation of the vector function b (vectors parallel to the xy-plane) together with 

its corresponding curl (vectors parallel to the xz-plane) 

Fig. 1.11 Representation of 

the vector function b 

redefined 

For each value of the z-coordinate, this function will be equal to itself, as shown in 

Fig. 1.11. The curl of this function will be the three-dimensional vector function: 

.curl b(x, y, z) =

⎡

⎣

0

0

3x2 − 3y2

⎤

⎦ (1.3) 

whose representation consists of all parallel vectors, as shown in the Fig. 1.12. In  

conclusion, referring to the analogy that associates the motion of a fluid with the 

vector field under consideration, the curl provides a measure of the intensity with
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Fig. 1.12 Representation of 

the curl of the function b 

redefined 

which the fluid rotates around the generic point considered, while also indicating the 

direction along which this rotation occurs through the use of the right-hand rule. 

1.1.5 Vector and Tensor Notation 

Here, we assume to be in an orthogonal Cartesian coordinate system . (O, x1, x2, x3)

or equivalently .(O, x, y, z), where the axes are identified by the unit vectors .i, j,k. 

In both notations, a generic scalar quantity (e.g., pressure, temperature, turbulent 

kinetic energy, etc.) will always be indicated by a symbol without subscripts (for 

example, . φ). A vector quantity (e.g., velocity) will be indicated using: 

• a bold symbol in vector notation; for example, . a, being .a = ax i + ayj + azk; 

• a symbol with a single subscript in tensor notation; for example, .ai , i = 1, 2, 3, 

being .ai = ax i + ayj + azk. 

As seen above, the gradient of a scalar function . φ is a vector expressible: 

• in vector notation as .∇φ, with .∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k; 

• in tensor notation .

∂φ

∂xi
, with .

∂φ

∂xi
=

∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k. 

The dot product of two vectors. a and. b—giving a scalar as result—can be expressed: 

• in vector notation as .a · b, with .a · b = a1b1 + a2b2 + a3b3; 

• in tensor notation as .a jb j with .a jb j = a1b1 + a2b2 + a3b3.



1.1 Differential Operators 13

Note that, for tensor notation, the Einstein notation or Einstein summation convention 

has been used. It is a convention for summing over repeated indices: each index that 

appears more than once in a term is summed over all possible values it can take. In 

this specific case, the notation .a jb j indicates the following summation 

. 

3
∑

j=1

a jb j .

Here, the subscript . j has been used instead of the subscript . i to emphasise the need 

for a subscript whose symbol can be chosen arbitrarily. Consistently,.aibic j indicates 

the summation: 

. 

3
∑

i=1

aibic j = a1b1c j + a2b2c j + a3b3c j .

Finally, in the case of two indices, both repeated, as for example .aibi jc j , it is:  

. aibi jc j ≡
3
∑

j=1

3
∑

i=1

aibi jc j =
3
∑

i=1

aibi1c1 +
3
∑

i=1

aibi2c2 +
3
∑

i=1

aibi3c3 =

= (a1b11c1 + a2b21c1 + a3b31c1) + (a1b12c2 + a2b22c2 + a3b33c2)

+ (a1b13c3 + a2b23c3 + a3b33c3) .

It has been previously seen that the divergence of a vector . a is a scalar quantity. 

Considering the symbolic vector nabla defined as .∇ = (∂/∂x, ∂/∂y, ∂/∂z), the  

divergence of a vector can be written: 

• in vector notation as .∇ · a being .∇ · a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
; 

• in tensor notation as .
∂a j

∂x j

, being .

∂a j

∂x j

=
3
∑

j=1

∂a j

∂x j

. 

The vector (or cross) product of two vectors . a and . b can be written: 

• in vector notation as .a × b, being 

.c = a × b =

∣

∣

∣

∣

∣

∣

i j k

ax ay az
bx by bz

∣

∣

∣

∣

∣

∣

=
(

aybz − azby
)

i + (azbx − axbz) j +
(

axby − aybx
)

k

= c1i + c2j + c3k;
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• in tensor notation as .ci = ǫi jka jbk , meaning 

. c1 =
3
∑

j=1

3
∑

k=1

ǫ1 jka jbk; c2 =
3
∑

j=1

3
∑

k=1

ǫ2 jka jbk; c3 =
3
∑

j=1

3
∑

k=1

ǫ3 jka jbk .

Here, the third-order tensor (i.e., a three-dimensional matrix) .ǫi jk—known as the 

Levi-Civita tensor—has been introduced. Its elements are defined as follows: 

. εi jk =

⎧

⎪

⎨

⎪

⎩

+1 i f (i, j, k) is an even permutation, i.e., (1, 2, 3), (2, 3, 1), (3, 1, 2)

−1 i f (i, j, k) is an odd permutation, i.e., (3, 2, 1), (1, 3, 2), (2, 1, 3)

0 i f the two indices coincide : i = j and/or j = k and/or k = i

Recalling that a permutation is a way of arranging distinct objects in sequence 

(in this case, numbers), it’s worth mentioning that by “even permutations,” it is 

meant permutations obtained with an even number of transpositions, while “odd 

permutations” refer to those obtained with an odd number of transpositions. By 

“transposition,” it is meant the exchange of two elements that are not necessarily 

adjacent, and zero is considered even. Considering the permutations of (1, 2, 3), 

we have: 

– ‘123’ is an even permutation because it is obtained with zero transpositions; 

– 123 .→ ‘213’ is an odd permutation because it is obtained with a single 

transposition: the exchange of 1 and 2; 

– 123 .→ 213 .→ ‘231’ is an even permutation because it is obtained with two 

transpositions: the exchange of 1 and 2, and the exchange of 1 and 3. 

The curl of a vector can be expressed as the vector symbol nabla cross the vector 

itself: 

• in vector notation 

. ∇ × a =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
ax ay az

∣

∣

∣

∣

∣

∣

∣

∣

=
(

∂az

∂y
−

∂ay

∂z

)

i +
(

∂ax

∂z
−

∂az

∂x

)

j +
(

∂ay

∂x
−

∂ax

∂y

)

k;

• in tensor notation, the i-th component will be .ǫi jk
∂a j

∂xk
, whose explicit meaning is 

.

3
∑

j=1

3
∑

k=1

ǫi jk
∂a j

∂xk
. 

A second-order tensor is represented in vector notation with a bold symbol, such 

as . Ŵ, while in tensor notation it is represented as .Ŵi j . The product of a second-order 

tensor . Ŵ with a vector . a—resulting in a vector—is represented as follows:
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• in vector notation as .Ŵ · a; 

• in tensor notation as .Ŵi ja j , whose explicit meaning is: .

3
∑

j=1

Ŵi ja j , that indicates 

the matrix-vector multiplication rule. 

1.1.6 Gauss (or Divergence or Ostrogradskij) Theorem 

This theorem states that the flux (see Sect. 2.8) of a vector field a passing through a 

closed, piecewise smooth surface .∂V is equal to the integral of the divergence of a 

over the region .V bounded by .∂V . In symbols: 

. 

∮

∂V

a · dS =
∫

V

∇ · a dV

where .dS = ndS is the product of the unit normal vector to the surface element and 

the area .dS of that element. In other words, the divergence of a vector field a for 

a finite region .V in space is equal to the sum of the fluxes leaving the infinitesimal 

surfaces into which the volume bounding surface.∂V can be divided. To calculate the 

value of the divergence associated with a specific point, one just needs to consider a 

very small volume, tending towards zero, to obtain 

. ∇ · a = lim
V→0

1

V

∮

∂V

a · dS.

The physical interpretation of this theorem identifies the integral of the divergence 

of a over the region .VP bounded by .∂VP with the rate of accumulation of the same 

vector field a inside the region .VP . Referring to Fig. 1.2, the divergence of a flow 

field will quantify the divergent part of the motion, extracting it from the general 

motion expression. In its generalised form, this theorem is expressed as 

. 

∮

∂V

n⋆a dS =
∫

V

∇⋆a dV

where the symbol .⋆ refers to any form of product—scalar .a · b, vector .a × b, or  

tensor .ab—to which will correspond, in the volume integral the operator .∇·, .∇×, . ∇
respectively.
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1.2 Fluid Mechanics 

1.2.1 Strain Rate Tensor 

Unlike solid mechanics, where strain (displacement per unit length) is a fundamental 

concept, in fluid mechanics, it is appropriate to use the concept of strain rate rather 

than strain because there is an equilibrium relationship between fluid stress and strain 

rate. In continuum mechanics, the strain rate tensor is a physical quantity describing 

the rate of deformation of a material around a point at a given instant. The strain rate 

tensor can also be interpreted as the time derivative of the strain tensor, or alternatively 

as the symmetric part of the gradient tensor of the velocity field describing a moving 

fluid. 

The strain rate tensor is a purely kinematic concept that describes the macroscopic 

motion within a material regardless of its physical state (solid, liquid, or gas), forces 

or stresses acting on it. The presence of deformation variations, i.e., a non-zero strain 

rate tensor, leads to the emergence of forces due to friction between adjacent material 

elements. These forces are described at each point by the strain rate tensor together 

with certain material-specific quantities. 

Given a three-dimensional velocity field .v = (v1, v2, v3), or equivalently . v =
(vx , vy, vz), its gradient will be a second-order tensor (see Sect. 1.1.1): 

. ∇v =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂vx

∂x

∂vy

∂x

∂vz

∂x

∂vx

∂y

∂vy

∂y

∂vz

∂y

∂vx

∂z

∂vy

∂z

∂vz

∂z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∂1v1 ∂1v2 ∂1v3

∂2v1 ∂2v2 ∂2v3

∂3v1 ∂3v2 ∂3v3

⎤

⎥

⎥

⎥

⎥

⎦

and, consequently, it will be 

. J = (∇v)T =

⎡

⎢

⎢

⎢

⎢

⎣

∂1v1 ∂2v1 ∂3v1

∂1v2 ∂2v2 ∂3v2

∂1v3 ∂2v3 ∂3v3

⎤

⎥

⎥

⎥

⎥

⎦

the associated Jacobian matrix. To describe the kinematic behaviour of a fluid in the 

neighbourhood of a point, it is possible to consider an infinitesimal volume element 

such that the velocity within it can be approximated by a first-order Taylor expansion. 

Without loss of generality, the centroid of the infinitesimal volume, defined as the 

origin, can be considered as the point. Subject to the motion field represented by the 

velocity vector . v, its centroid will move with velocity .vG , while a point . P , different 

from . G, will move with velocity .vP because the velocity vector . v is a function of
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both space and time. In the case where .P is in a neighbourhood of .G such that a 

truncated Taylor series expansion to the first order is valid, it can be written 

. vP = vG + (∇v)T · x

or, equivalently 

. v = vG + J · x

in which the symbol . x represents the position vector of the generic point . P . Like any  

matrix, the Jacobian matrix can also be decomposed into its symmetric part, defined 

as 

.E =
1

2

(

J + JT
)

with Ei j =
1

2

(

∂ jvi + ∂iv j

)

(1.4) 

and its antisymmetric (skew) part defined as 

. R =
1

2

(

J − JT
)

with Ri j =
1

2

(

∂ jvi − ∂iv j

)

which leads to writing the expression of the velocity of point .P as 

. v = vG + E · x + R · x

being 

. J = E + R with Ji j =
∂vi

∂x j

= ∂ jvi = Ei j + Ri j .

The antisymmetric part .R · x represents a rigid rotation of point .P around .G with 

angular velocity .ω defined as 

.ω =
1

2
∇ × v =

1

2

⎡

⎣

∂2v3 − ∂3v2
∂3v1 − ∂1v3
∂1v2 − ∂2v1

⎤

⎦ . (1.5) 

The quantity .∇ × v is called the rotational tensor of the velocity vector field . v, 

or simply the vorticity tensor. Due to the antisymmetry of . R, it is  .Ri j = −R j i . In  

the case where the motion is completely described solely by the symmetric tensor, 

it is referred to as irrotational motion. It’s worth noting that rigid rotation does not 

alter the relative positions of points in space, hence the antisymmetric tensor . R

does not contribute to deformation. The only contribution to the rate of deformation 

comes from the symmetric tensor . E, also known as the strain-rate tensor. Like any  

other matrix, the strain-rate tensor . E can also be decomposed into its spherical or 

hydrostatic part . S and its deviatoric part . D: 

.E = S + D.
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Defining the trace of a matrix as the sum of the elements along the main diagonal, 

the spherical part is defined as 

. S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

3
(E11 + E22 + E33) 0 0

0
1

3
(E11 + E22 + E33) 0

0 0
1

3
(E11 + E22E33)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
1

3
tr(E)I

in which the symbol.tr(E) denotes the trace of the strain rate tensor. E and. I represents 

the identity matrix. Alternatively, in tensor notation 

. Si, j =
1

3

(

∑

k

∂kvk

)

δi j

in which the symbol .δi j (.δi j = 1 when .i = j , .δi j = 0 when .i �= j) is used. It is 

observed that the deviatoric part can be seen as the scalar sum of the main diagonal 

elements of . E multiplied by the identity tensor represented by the Kronecker delta; 

the deviatoric part represents the deformation that causes isotropic volume change 

(expansion/contraction) and is therefore called the rate of dilatation tensor. Notice 

that the trace of the rate of dilatation tensor coincides with the divergence of the 

velocity vector field . v and therefore represents the rate of change of volume per unit 

time, i.e., the rate of volume change. The deviatoric part, called the rate of shear 

tensor, is defined as 

. D = E − S = E −
1

3
tr(E)I

or, alternatively 

. Di, j =
1

2

(

∂iv j + ∂ jvi
)

− Si j =
1

2

(

∂iv j + ∂ jvi
)

−
1

3

(

∑

k

∂kvk

)

δi j .

Since . E is a symmetric tensor, so is . D, representing deformations that, overall, do 

not cause volume changes. In conclusion, the motion of point .P will be the sum of: 

• a translation with the velocity of the particle’s centroid . G; 

• a rigid rotation described by the tensor . R; 

• a deformation due to isotropic volume change described by the tensor . S; 

• a deformation due to shear without volume change described by the tensor . D.
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1.2.2 Q or Okubo-Weiss Criterion 

This parameter is a scalar used mainly for visualisation purposes and, with reference 

to Definition 1.5, is defined as 

. Q = ωi jωi j − Si j Si j .

The parameter Q is positive in regions where vorticity is greater than the rate of 

deformation, and vice versa; it approaches zero near the walls. 

1.2.3 Stress Tensor 

By definition, stress is a force per unit area. On any surface where a force acts, an 

associated stress vector can also be defined. As in the case for the strain-rate tensor, 

the purpose of the stress-tensor is to uniquely define the stress state at every point in a 

flow field. As it will be clearer when reading Sect. 2.5, applying Newton’s second law 

to an infinitesimal control volume within the considered continuum medium leads to 

a second-order tensor called the stress tensor, which can be indicated by the symbol. P

in vector notation or by the symbol.pi j in tensor notation. The stress tensor can also be 

interpreted as a mathematical operator: considering an infinitesimal oriented surface 

identified by the vector .dS = dSn, applying the stress tensor to the unit normal unit 

vector . n, results in the stress (force per unit area) . f acting on the surface element 

considered. In vector notation, this is expressed as .f = P · n; in tensor notation, it is 
represented as . fi = pi jn j . 

To better understand the importance of the stress tensor, let’s consider an infinites-

imal oriented surface with its normal coinciding with the. j unit vector of the Cartesian 

coordinate system. Applying the stress tensor to the . j unit vector yields the stress 

(with its three components) acting on the infinitesimal surface element belonging to 

the .xz plane with normal . j. In formulas:  

. f (y) =

⎡

⎣

p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤

⎦

⎡

⎣

0

1

0

⎤

⎦ =

⎡

⎣

p12
p22
p32

⎤

⎦ .

Notice that the stress acting on the infinitesimal surface element belonging to the . xz

plane corresponds to the second column of the stress tensor. In general: 

• the stress vector acting on infinitesimal surfaces belonging to a plane with the unit 

normal vector . n is represented by the .n-th column of the stress tensor . P; 

• the .m-th component of the stress acting on infinitesimal surfaces belonging to a 

plane with the normal vector . n is represented by the element .pi j of the stress 

tensor.
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At this point, it is clear that the columns of the stress tensor are an ordered sequence of 

the stresses acting on infinitesimal surface elements lying on planes having as normal 

unit vector the unit vectors of the considered Cartesian coordinate system. Even 

though forces or stresses are measurable on actual solid surfaces, here the interest is 

on “virtual” surfaces interior to the flow field. For every possible orientation of the 

virtual surface, there is a different stress vector that describes the forces exerted by the 

flow on the surface. Aiming at a unique representation of the stress state at a point in 

a flow, the stress vector is not sufficient to represent it. However, the stresses on three 

mutually orthogonal differential surfaces can represent the stress state uniquely. The 

three vectors that describe the stress on these surfaces are represented as a tensor. The 

nine particular numbers that comprise the tensor depend on the coordinate system in 

which the tensor is represented. 

1.2.4 Constitutive Equations 

If, in the case of solids, the constitutive equations represent the relationship between 

the components of the stress tensor and the deformations with respect to the unde-

formed configuration, in the case of fluids, the constitutive equations represent the 

relationship between the components of the stress tensor and the components of the 

rate of deformation tensor, which coincide with the spatial derivatives of the velocity 

vector components. Since, generally, for a fluid, when the velocity is zero, the shear 

stresses are zero while the normal stresses can still be non-zero, we proceed to break 

down the stress tensor into its spherical part and its deviatoric part as shown below: 

.

⎡

⎣

p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤

⎦ =

⎡

⎣

−p 0 0

0 −p 0

0 0 −p

⎤

⎦+

⎡

⎣

p11 + p p12 p13
p21 p22 + p p23
p31 p32 p33 + p

⎤

⎦ (1.6) 

In which . p is the thermodynamic pressure, defined as the negative of the mean value 

of the normal stresses in the three coordinate directions: in tensor notation . p = − pkk
3

(implicit summation notation is used). The negative sign is a matter of convention: 

a positive pressure is usually understood to be compressive (i.e. inward directed), 

whereas a positive normal stress is taken to be tensile (i.e. outward directed). Hence 

the need for the negative sign. The Eq. 1.6 in tensor notation becomes: 

. pi j = −pδi j + (pi j + pδi j ) = −pδi j + τi j .

The tensor .τi j = pi j + pδi j is the deviatoric part of the stress tensor and is called the 

viscous stress tensor by construction, characterized by having zero trace (.τi i = 0). 

It will be:
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. τ11 = p11 −
p11 + p22 + p33

3
, τ22 = p22 −

p11 + p22 + p33

3
,

τ33 = p33 −
p11 + p22 + p33

3

and therefore 

. τ11 + τ22 + τ33 = 0.

.τ11, τ22 and .τ33 are the deviatoric normal stresses, meaning the fluid-mechanical 

normal stress plus the thermodynamic pressure. Being related only to fluid motion, 

the deviatoric stress tensor is zero for a fluid at rest. Referring to Sects. 2.5 and 

2.5.1, although viscous stresses are generally tangential in nature, normal viscous 

stresses (.τi i = pi i + p) can take non-negligible values. For Newtonian fluids, the 

Stokes hypothesis 1 holds. Based on the Stokes hypothesis, the deviatoric part (i.e., 

that with zero trace) of the stress tensor is proportional to the deviatoric part of the rate 

of deformation tensor by a constant of proportionality . μ, called dynamic viscosity. 

Referring to Sect. 1.2.1 and using tensor notation, this relationship can be expressed 

as: 

. pi j −
1

3
δi j pkk = 2μ

(

Ei j −
1

3
δi j Ekk

)

equivalent to 

. τi j = 2μDi j

Observing that the trace of the rate of deformation tensor is equal to the divergence 

of velocity (.Ekk = ∇ · v), we can write: 

. τi j = 2μ

(

Ei j −
1

3
δi j∇ · v

)

and, for incompressible flows (see Eq. 1.4) 

. τi j = 2μEi j = μ
(

∂ jvi + ∂iv j

)

This is the three-dimensional generalization of the well-known Newton’s law of vis-

cosity, expressing the proportionality, via dynamic viscosity (. μ), between the viscous 

shear stress and the velocity gradient when the velocity has only one component . u

(along the .x-axis) and varies only in the direction orthogonal to the axis along which 

it is defined (along the .y-axis). In formula: .τ = μ∂u/∂y.

1 George Gabriel Stokes, On the theories of the internal friction of fluids in motion and of the 

equilibrium and motion of elastic solids, Cambridge, Trans. Cambridge Philos. Soc., 8, 287–319, 

1845. 
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1.3 Differential Equations with Physical Applications 

1.3.1 Generalities on Partial Differential Equations 

A differential equation is an equation involving one or more derivatives of an 

unknown function. If all the derivatives are taken with respect to a single inde-

pendent variable, it is called an ordinary differential equation (ODE), while it is 

termed a partial differential equation (PDE) when derivatives with respect to multi-

ple independent variables are involved. The differential equation (whether ordinary 

or partial) has order . n if . n is the maximum order of the derivatives appearing in it. 

A partial differential equation generally has an unknown function . u(x1, x2, . . . , xr )

of . r independent variables and establishes a relationship among the independent 

variables, the function . u, and its partial derivatives. Here, we will consider first- and 

second-order equations. First-order equations are in the form: 

. aux + bu y = f

while second order equations will be 

. auxx + buxy + cu yy = f

where.a, b, c, f are functions of.x, y, u as well as they are functions of the first order 

partial derivatives .ux , u y , and/or second partial derivatives .uxx , u yy in the case of 

second order equations. In both cases, the equation is called linear if the coefficients 

. a and. b (respectively.a, b, c) depend only on. x and. y, and. f is linear in. u (respectively 

in .u, ux , u y); if the coefficients depend on .x, y, u, ux , u y , the equation is termed 

quasi-linear. In the specific problems discussed here, often one variable, either . x , is  

a spatial variable, the other is a temporal variable, and when this occurs, it will be 

denoted by . t instead of . y. An integral or solution, in the classical sense, of a .n-th 

order partial differential equation is a function . u that satisfies the equation in a given 

connected open set . �, where . u is continuous with its derivatives up to the .n-th order. 

If boundary or limit conditions are assigned on . Ŵ, the boundary of .� (or part of it), 

then . u must be continuously differentiable on .� ∪ Ŵ up to the order required by the 

conditions. The general integral is the totality of solutions. For ordinary differential 

equations it makes sense to pose the problem of finding the general integral (i.e., the 

set of all solutions). For partial differential equations the approach is different, and 

usually, the more limited objective is to determine any solutions that satisfy some 

additional conditions, which are generally those imposed at the boundary .Ŵ of . �

(boundary conditions). Being . c a positive constant, the following equations are of 

common interest: 

. ut + cux = 0, transport equation

.ut t − c2uxx = 0, waves equation
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. uxx + u yy = 0, Laplace equation

. ut − cuxx = 0, heat equation.

A general property of the solutions of partial differential equations is that the general 

integral depends on arbitrary functions rather than arbitrary constants, as is the case 

of ordinary differential equations. 

1.3.2 Mathematical Classification of Linear and Quasi 

Linear Partial Differential Equations 

For simplicity, we consider equations with only two variables. 

. a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)u yy + b1(x, y)ux + b2(x, y)u y+
+ c(x, y)u = d(x, y) (1.7) 

having the coefficients the necessary regularity. 

The classification is based solely on the part containing the second order 

derivatives: 

. a11(x, y)uxx + 2a12(x, y)uxy + a22(x, y)u yy .

This part is termed principal part of the equation. The classification of Eq. 1.7 is 

based on the sign of the discriminant .δ = a212 − a11a22 of the principal part: 

• if .δ > 0 the equation is said to be hyperbolic; 

• if .δ = 0 the equation is said to be parabolic; 

• if .δ < 0 the equation is said to be elliptic. 

Elliptic equations are those having .∇2u as principal part (Laplace, 2 Poisson 3); the 

heat equation (and similar ones) are parabolic equations; the transport equation and 

the wave equation are hyperbolic equations. Each type of equation corresponds to a 

pair of sets of characteristic curves (see Sect. 1.3.3). In the case of hyperbolic equa-

tions, the characteristics are real and distinct, meaning that information propagates 

with finite velocity along two specific sets of directions in the x-t plane. In the case 

of parabolic equations, the two sets degenerate into a single set, and thus informa-

tion propagates with finite velocity along a single direction. In the case of elliptic 

equations, the characteristic curves are not real, and there are therefore two distinct 

sets of imaginary curves: there is no preferred direction, and information propagates

2 P.S. Laplace, Mémoire sur la théorie de l’anneau de Saturne, Paris, Mémoires de l’Académie 

Royale des Sciences de Paris, 1787. 
3 S.D. Poisson, Remarques sur un equation qui se presente dans la théorie des attractions des 

spheroides, Paris, Nouveau bulletin des sciences: par la Société philomat(h)ique (de Paris), 1813. 
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instantaneously in all directions. The Navier–Stokes equations are second-order non-

linear partial differential equations that possess properties of each of the three types 

of equations mentioned above. Considering a non-steady, inviscid, and compress-

ible flow, it is possible to observe sound waves and shocks, indicating distinctly the 

hyperbolic nature of this type of flow. For supersonic steady compressible flows, 

the nature will be hyperbolic. For subsonic steady compressible flows, the nature of 

the equations will be mixed hyperbolic and elliptic. For incompressible flows, the 

properties will resemble those specific to elliptic equations. Typically, flows do not 

exhibit properties attributable to just one of the types of equations seen before. An 

illustrative example in this regard is the case of steady transonic flows, which feature 

both subsonic (elliptic) and supersonic (hyperbolic) regions. 

1.3.3 Transport Equation 

This equation is also known as the advection equation. The  term  advection and 

the associated phenomenon are distinct from the term convection and its related 

phenomenon, although they are often used interchangeably. Advection refers to the 

movement of a certain quantity because it is immersed in a moving fluid, while 

convection refers to the movement of a certain quantity because it is immersed in a 

moving fluid generated by density gradients caused by thermal gradients. Considered 

a generic quantity described by a scalar field u(x,y,z,t) and immersed in a velocity 

field c, the corresponding advection equation is the following continuity equation: 

.ut + ∇ · (uc) = 0. (1.8) 

In the case of an incompressible flow, .∇ · c = 0, and the velocity field . c is said to be 

solenoidal. For incompressible flows, Eq. 1.8 can be written as: 

.ut + c · ∇u = 0. (1.9) 

Unidimensional transport equation (also known as inviscid Burgers equation 4) 

.ut + cux = 0 (1.10) 

can be used to describe the pure transport of a quantity .u(x, t) carried out by a 

solenoidal velocity field .c = (c, 0, 0). Below, a possible way to construct such an 

equation will be illustrated (see also Sects. 2.4 and 2.8). 

Figure 1.13 shows the curve representative of a quantity .u(x, t) as a function of x 

for time.t = 0. Due to the velocity field. c, and being this a pure transport phenomenon, 

the same curve will reappear at time .t = 1 but translated by an amount .�x = c�t ,

4 J.M. Burgers, A Mathematical Model Illustrating the Theory of Turbulence, Amsterdam, Elsevier, 

1948. 
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Fig. 1.13 Transport of the 

quantity . u in a velocity 

field . c

where.�t denotes the time interval between.t = 0 and.t = 1. The same applies to the 

transition from .t = 1 to .t = 2. It is possible to give an intuitive definition of a wave 

as a sequence of motion fields resulting from the transport of a generic quantity with 

a specific velocity. It can be observed that points characterised by the same value of 

. u at different times all lie on a line. For each considered value of . u, there will be a 

different line lying on a plane parallel to the .xt plane. The curves obtained from the 

union of points characterised by the same value of . u are called characteristic curves. 

These curves shape depends on the type of differential equation considered; in this 

case, the characteristic curves are straight parallel lines described by the equation 

.x − ct = x0. These characteristic curves form a family of curves. Considering t=0 

and x(t=0)=x0, the corresponding u value is called invariant. Each invariant identifies 

a single characteristic curve. The direction of propagation of information will be, in 

this case, that of increasing . x . 

Another interpretation of the characteristic curves is as follows. Considering a 

continuous variation of time, the curves representing the spatial distribution of . u will 

describe a surface, the trace of which at three time values is indicated by the curves 

in Fig. 1.13. The directional derivative of this surface along the direction indicated 

by the characteristic curves is always zero, due to the fact that the value of . u does 

not change along the characteristic curves. In formulas, this concept translates into 

setting equal to zero the dot product between the unit vector indicating the direction 

of the characteristic curves (in the .xt plane) and the gradient of . u. Since this dot 

product is zero, a vector can be considered instead of the unit vector, provided that 

the direction does not change. In a unit time interval, the distribution of . u will be 

translated by an amount .�x = c�t = c · 1 = c, and thus, a vector with the same 

direction as the characteristic curves can be written as .(c, 1), while the gradient of . u

is .(ux , ut ). In formulas:  

. (c, 1) · (ux , ut ) = 0 ⇒ ut + cux = 0

namely, the transport equation.
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The general solution of the transport equation is 

. u(x, t) = F(x − ct)

Here, .F is a generic function of which it is possible to compute the first derivative 

considering that 

. ut = −cux , ux =
∂F

∂x
.

Graphically, .F(x − ct) is obtained from .F(x) (the configuration at time .t = 0) by a  

translation of magnitude .ct in the positive direction of the .x-axis. 

The concept of the inviscid Burgers’ equation is also applicable when the velocity 

field . c in which the scalar field .u(x, y, z, t) is immersed is non-solenoidal. In the 

one-dimensional scenario, the inviscid Burgers’ equation can be expressed as: 

.ut + uux = 0 (1.11) 

where the velocity field. c and the transported quantity.u(x, t) coincide. Equation 1.11 

represents the one-dimensional motion of an inviscid fluid moving with velocity 

.u(x, t), not subject to external forces. From a physical point of view, it describes 

the rectilinear uniform motion of individual portions of the fluid, which may have 

different velocities from point to point. As will be further elucidated in Chapter 

2, the Burgers’ equation can be considered as a simplification of the conservation 

equation of momentum, considering only the terms of temporal derivative and advec-

tion. Specifically, Burgers’ equation is often used to examine the characteristics of 

numerical discretisation schemes concerning the non-linear advective term .uux . 

To grasp an idea of what Eq. 1.11 represents, one can envision a very narrow 

corridor traversed by people lined up in a row one by one, each one at a constant 

speed (no acceleration), and unable to overtake one another. The person who is at 

position . x at time .t = 0 will move at a constant speed .u(x, 0). If  .u(x, 0) is never 

decreasing, there will be no collisions; in particular, if in some time interval.u(x, 0) is 

increasing, meaning the people ahead are faster, they will move away from each other 

(rarefaction). If, in some time interval, .u(x, 0) is decreasing, i.e., the people behind 

are faster, collisions will eventually occur. In the case of inviscid Burgers’ equation, 

the characteristic are curves that intersect in the case of collisions and diverge in the 

case of rarefactions. 

1.3.4 Wave Equation 

Wave, or vibrating string, equation 

.ut t = c2uxx (1.12)
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has the following physical interpretation: given an elastic string, initially positioned 

along the.x-axis at rest, the configuration is disturbed and the string allowed to vibrate. 

Then, it can be shown that the normal displacement (along the .y-axis) .u(x, t) at the 

instant . t and position . x is an integral of Eq. 1.12, whose general solution is 

.u(x, t) = F(x + ct) + G(x − ct) (1.13) 

with .F and .G being arbitrary functions for which it is possible to write the second 

derivatives. Equation 1.13 expresses the fact that the motion of the string results 

from the superposition of two waves travelling in opposite directions with velocity 

. c. Similarly to what was seen with the transport equation, here part of the solution is 

constant along the family of characteristics .x − ct = const and part along the family 

.x + ct = const. In other words, while in the case of the transport equation, there is 

only one characteristic passing through each point in the .xt-plane, in the case of the 

wave equation, there will always be two characteristics passing through each point. 

To better understand, let’s consider the following initial value problem, or  Cauchy 

problem. Given an infinitely long string with initial position and velocity known and 

respectively given by 

. u(x, 0) = f (x) − ∞ < x < ∞

and 

. 

∂u(x, 0)

∂t
= g(x) − ∞ < x < ∞,

find the general solution of wave Eq. 1.12. It can be shown that the solution to this 

problem is given by the D’Alembert 5 formula 

.u(x, t) =
1

2
[ f (x + ct) + f (x − ct)] +

1

2c

∫ x+ct

x−ct

g(z)dz. (1.14) 

This formula expresses the dependence on two factors of the value of . u at a generic 

point .P(x∗, t∗): 

1. the mean value of . u in correspondence of the points .A(x∗ − ct∗, 0) and . B(x∗ +
ct∗, 0): this is the term .

1
2
[ f (x + ct) + f (x − ct)] of Formula 1.14 with . x = x∗

and .t = t∗; 

2. the mean string velocity value in .[A, B]: this is the  term  . 1
2c

∫ x+ct

x−ct
g(z)dz of 

Formula 1.14 with .x = x∗ and .t = t∗. 

From what has just been said, it follows that, considering a generic point .P(x∗, t∗), 

the solution at . P depends only on the values of . u in the interval .I = [A, B], referred 
to as the dependence interval of point . P . Considering the Fig. 1.14, the triangle

5 Jean-Baptiste Le Rond d’Alembert, Research on the vibrating strings, Berlin, History of the Royal 

Academy of Berlin, 1747. 
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Fig. 1.14 Interval and 

domain of dependence 

bounded by the interval . I and by the two characteristic lines passing for . P , is called 

the continuous dependence domain of point . P . Data on  . I uniquely determine the 

solution only in .T 1. 

On the other hand, the influence domain of .P is defined by the triangle . T 2

bounded by characteristic lines passing through . P . It is so called because the value 

of the solution at .P influences the solution at all points in .T 2. Figuratively, it can be 

said that an observer located in .x∗ at time . t∗—the point . P—feels the effects of what 

happened in .T 1, but not of what happens outside of .T 1, and at the same time, the 

effect of a disturbance at .P can only be felt in the domain .T 2. 

It is useful to specify here that the term domain of dependence or influence refers 

to the .xt plane; when referring only to spatial coordinates, we will speak of zone of 

dependence or influence. In the case of the transport equation seen in Sect. 1.3.3, the  

zone of dependence is constituted by the points on the .x-axis already affected by the 

passage of the disturbance relative to the considered time; the zone of influence is 

constituted by the points on the .x-axis not yet affected by the passage of the distur-

bance relative to the considered time. In the case of the wave equation represented 

in Fig. 1.14, at the time corresponding to point . P , the dependence zone will be the 

interval . I while the influence zone will be the entire .x-axis. 

1.3.5 Heat Equation 

The heat equation describes the transport of thermal energy between particles at 

different temperatures (the same equation also governs, for example, the chemical 

concentration of different species present in the same domain of interest). The heat 

equation is also known as equation of transport by pure diffusion because it describes 

the evolution of a generic quantity due solely to the phenomenon of diffusion. 

The law of Fourier 6

. f = −k∇T

6 Jean-Baptiste Joseph Fourier, The analytical theory of heat, translation by Alexander Freeman, 

London, Cambridge University Press, 1878, ed. or.: Théorie analytique de la chaleur, Paris, Didot, 

1822. 
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describes the heat flux . f as a function of the thermal conductivity coefficient . k and 

the temperature . T . The minus sign indicates that thermal energy naturally moves 

from zones of higher temperature to zones of lower temperature. Here, it is useful 

to recall the definition of specific heat as the amount of energy (or heat) required to 

raise or lower the temperature of a given mass or volume of the substance by one 

unit. When this temperature change is achieved through an isobaric process, it is 

referred to as the specific heat at constant pressure, denoted by the symbol . cp. 

Considering a control volume . V , the expression of the conservation equation for 

thermal energy .E is given by 

. 

∫

V

∂E

∂t
dV +

∮

∂V

k∇T · dS = 0.

From this, considering an infinitesimal one-dimensional element and thermal energy 

stored solely as enthalpy (.E = ρcpT ), we obtain the differential form of the heat 

equation: 

.

∂T

∂t
+

k

cpρ

∂2T

∂x2
= 0, (1.15) 

assuming . k and .cp not depending on temperature. 

In the case where there are no variations in temperature over time, Eq. 1.15 can 

be written as: 

.∇2T =
∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0 (1.16) 

also named Laplace equation. 7 By replacing temperature with velocity in Eq. 1.16, 

one would obtain the conservation equation for momentum (2.24) in the case where 

diffusion is the only cause of momentum variation. If there is a source term present 

in Eq. 1.16, for example due to chemical reactions, we would obtain the Poisson 

equation 8: 

. ∇2 T = s.

As shall be elaborated in more detail in Sect. 6.4.1, the Poisson equation, with its 

elliptic nature, will be used as the pressure correction equation in segregated solution 

algorithms.

7 Pierre-Simon de Laplace, Théorie des attractions des sphéroïdes et de la figure des planétes Paris, 

Gauthier-Villars, 1782. 
8 Siméon Denis Poisson, Remarques sur une équation qui se présente dans la théorie des attractions 

des sphéroïdes, Nouveau bulletin des sciences: par la Société philomat(h)ique (de Paris), Paris, J. 

Klostermann fils, t. III, n.75, Dec. 1813, pp. 388–392. 
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1.4 Gasdynamics 

1.4.1 Mechanical Waves 

A wave is a disturbance that originates from a source and propagates through time 

and space, carrying energy or momentum. Mechanical waves are those that propagate 

exclusively through material media other than vacuum. The medium through which a 

wave propagates can be thought of as being composed of infinitely small oscillators, 

each oscillating with its own phase and amplitude to form a wave. Fundamental 

characteristics of a wave include the following quantities: 

• amplitude: it is the maximum displacement from the undisturbed position; 

• frequency: it is the number of complete oscillations per unit time. The unit of 

measurement in the International System is the hertz (Hz), dimensionally equiv-

alent to the inverse of time (.1 Hz = 1 s−1). It is also referred to as the angular 

frequency, denoted by .ω and expressed in terms of frequency . f as .ω = 2π f . 

Angular frequency is measured in radians per second (.rad/s). 

• wavelength: it is the distance between two crests or two troughs of the wave. It is 

measured in meters and denoted by the symbol . λ. 

• wave number: for wavelength, it is what angular frequency is for frequency. It is 

denoted by the symbol. k and expressed in terms of wavelength. λ as.k = 2π/λ. The  

wave number is measured in radians per meter (.rad/m) or simply as the  inverse  of  

a length, given that radians have no dimension. 

• wave velocity: The simplest form of wave velocity is the phase velocity, defined 

as the speed of propagation of points of the wave shape characterised by constant 

phase, such as the velocity at which a crest moves. Wave shape is the profile 

generated, on a Cartesian plane, by the measurement of a signal with respect to 

two quantities, for example time and displacement, that characterise it. The time 

taken by a crest to travel a distance equal to a wavelength . λ is .t = λ/c, where . c is 

the phase velocity of the wave. In the time interval. t , a point on the wave completes 

one full cycle of oscillation, so .t = 1/ f . Therefore, it can be written that .c = f λ. 

Considering the direction of oscillation motion relative to the direction of propa-

gation, and with reference to Figs. 1.15 and 1.16, waves can be distinguished as 

follows: 

• Transverse waves: in this type, the oscillatory motion occurs in a direction per-

pendicular to the overall direction of wave propagation. Examples of transverse 

waves include those propagating on guitar strings and other stringed instruments; 

• Longitudinal waves: in this type, the oscillatory motion occurs in a direction par-

allel to the overall direction of wave propagation. Examples of longitudinal waves 

include pressure waves in a gas, where the pressure gradient created by the wave 

passage is parallel to the direction of propagation; 

• Mixed waves: in this type, the oscillatory motion occurs in all directions. A typical 

example of this type of wave is ocean waves, which propagate at the interface of
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Fig. 1.15 Longitudinal (up) 

and transverse (bottom) 

waves 

Fig. 1.16 Mixed waves 

two fluids with different densities (in this case, water and air). In this case, there 

is a resultant circulatory motion resulting from the composition of the transverse 

and longitudinal components of the oscillation. 

1.4.2 Acoustic Waves Equation 

Acoustic waves are mechanical longitudinal waves and, as such, can be represented as 

a function of the displacement from the equilibrium position of the medium through 

which they propagate. Specifically, acoustic waves can also be represented as pressure 

waves.
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1.4.3 One-Dimensional Pressure Waves 

For simplicity, let’s consider the motion of a fluid element restricted only to the 

. x direction. Figure 1.17 illustrates the variation of absolute pressure .P on the two 

.x-normal faces, while Fig. 1.18 illustrates the variation of the .x-component . u of 

velocity on the two corresponding faces of the fluid element. Both pressure and 

velocity are functions of space and time: .P(x, t) and .u(x, t). The component along 

the . x direction of the total force due to the pressure acting on the fluid element at a 

given time . t is given by the difference in pressure acting on the two .x-normal faces. 

Considering that the variation of pressure along the . x direction at a fixed time . t is 

given by the partial derivative of. P with respect to. x , the pressure difference between 

the two .x-normal faces will be: 

. δP =
∂P

∂x
δx

Fig. 1.17 Pressure acting on 

two fluid element faces 

Fig. 1.18 Deformation of a 

fluid element due to the 

different velocities of its two 

surfaces
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in which, to indicate that the variations are small, the symbol . δ has been used rather 

than the symbol . �. Consequently, the component along the .x-direction of the total 

force due to the pressure acting on the fluid element will be 

. δFx = −
∂P

∂x
δxδyδz

where the minus sign is introduced to account for the fact that an increase in pressure 

with increasing . x results in a force opposite to the direction of increasing . x . 

The change in velocity .u(x, t) with respect to time at a particular value of . x (i.e., 

.∂u/∂t) is the component along . x of the acceleration. Applying the second law of 

Newton .Fx = max to the fluid element, we obtain 

. −
∂P

∂x
δxδyδz = ρδxδyδz

∂u

∂t

being .ρδxδyδz the mass in the fluid element. Or, equivalently 

.

∂P

∂x
= −ρ

∂u

∂t

∣

∣

∣

∣

x

. (1.17) 

When the fluid element is crossed by the pressure wave, its two .x-normal faces 

will be characterised by different velocities as shown in Fig. 1.18. The fluid element 

will therefore undergo a change in volume, for which it is necessary to consider the 

definition of the modulus of compressibility . B (see also Sect. 1.4.5): 

.B = −
�P

�V/V0

(1.18) 

where .�P is the change in pressure, .�V is the change in volume, .V0 is the undis-

turbed volume. Here too, to indicate that the variations are small, the symbol . δ will 

be used instead of the symbol . �. 

The difference in velocity of the two .x-normal faces can be expressed as 

. δu =
∂u

∂x

∣

∣

∣

∣

t

δx

that is, the change in velocity along the coordinate . x at a fixed moment in time 

multiplied by the thickness .δx of the fluid element. This difference in velocity cor-

responds to a change in length over the time interval . δt , which is equal to .δuδt , and 

consequently a change in volume equal to 

.δV =
∂u

∂x

∣

∣

∣

∣

t

δxδyδzδt.
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Given .V0 = δxδyδz, we have  

. 

δV

V0

=
∂u

∂x

∣

∣

∣

∣

t

δt.

Now, we can revisit Formula 1.18 to write 

. δP = −B
δV

V0

= −B
∂u

∂x

∣

∣

∣

∣

t

δt

thus 

. 

δP

δt
= −B

∂u

∂x

∣

∣

∣

∣

t

.

For .δt approaching zero 

.

∂P

∂t
= −B

∂u

∂x

∣

∣

∣

∣

t

. (1.19) 

The partial derivative symbol is used because pressure .P is a function of both . x and 

. t , and in this case, we are considering the variation over time for a fixed value of . x . 

Equations 1.17 and 1.19 are two expressions that relate the variation in pressure to 

the variation in velocity. To obtain a single equation from these, we can differentiate 

Eq. 1.17 with respect to . x to get: 

. 

∂2P

∂x2
= −ρ

∂u

∂x∂t

and differentiate Eq. 1.19 with respect to . t to get 

. 

∂2P

∂t2
= −B

∂u

∂t∂x
.

Remembering that 

. 

∂u

∂x∂t
=

∂u

∂t∂x
,

the pressure equation in terms of absolute pressure .P is: 

. 

∂2P

∂x2
=

ρ

B

∂2P

∂t2
.

This relationship also holds when considering the difference .p(x, t) between the 

absolute pressure. P and the pressure.P0 of the medium under undisturbed conditions: 

.p(x, t) = P(x, t) − P0.
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In this case 

. 

∂2 p

∂x2
=

ρ

B

∂2 p

∂t2
.

1.4.4 Acoustic Waves Described by Displacement 

from the Equilibrium Position of the Transmitting 

Medium 

For simplicity, we consider the motion of a fluid element restricted to the . x direction. 

Referring to Fig. 1.17 and denoting the displacement of the transmitting medium in 

time and space by the symbol .φ(x, t), the velocity of each point of the transmitting 

medium can be expressed as: 

. u(x, t) =
∂φ(x, t)

∂t
.

Remembering the Formula 1.17, it is possible to write 

.

∂P

∂x
= −ρ

∂u

∂t
= −ρ

∂2φ

∂t2
=

∂ p

∂x
. (1.20) 

Referring to Fig. 1.19, the change in volume of the fluid element as a function of 

displacement can be expressed as: 

. δV = δyδz [φ(x + δx, t) − φ(x, t)] .

Consequently, 

. 

δV

V0

=
[φ(x + δx, t) − φ(x, t)]

δx

being.V0 = δxδyδz the initial volume of the fluid element. Considering the definition 

of bulk modulus expressed by Eq. 1.18, it is clear that we are observing the change 

Fig. 1.19 Fluid element 

volume variation as a 

function of displacement
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of volume (relative to the undisturbed value) when varying the pressure from the 

undisturbed value (.P0) to the  value  .p + P0. In other words we are observing the 

change of volume caused by the pressure change .�P = p. Consequently, from 

Eq. 1.18, we can write: 

. p = −B
δV

V0

= −B
[φ(x + δx, t) − φ(x, t)]

δx

and, considering . δx → 0

. p = −B
∂φ

∂x

which, derived with respect to . x gives 

. 

∂ p

∂x
= −B

∂2φ

∂x2
.

Remembering Eq. 1.20, it is possible to delete the pressure term to write the equation 

of displacement wave 

. 

∂2φ

∂x2
=

ρ

B

∂2φ

∂t2
.

It is noted that the displacement wave has a phase velocity .

√
B/ρ equal to that of the 

pressure wave. The solution of the displacement wave equation turns out to be: 

. φ(x, t) = Aei(kx−ωt)

as a consequence, the solution of the pressure equation is 

. p(x, t) = −B
∂φ

∂x
= −ikBAei(kx−ωt) = kBAei(kx−ωt)−π/2.

Therefore, the pressure is observed to have a phase shift of .π/2 compared to the 

displacement, which means that the pressure reaches its maximum when the dis-

placement of the transmissive medium is zero. This behaviour is counterintuitive 

when compared to the behavior of a simple mass-spring system, where the force is 

maximum when the displacement from the equilibrium position is maximum. 

1.4.5 Bulk Modulus 

An element of material subject to limited stresses of compression, tension, or shear, 

strains while maintaining its volume constant. When immersed in a fluid, the material 

element will be subjected to a pressure field acting on each of its faces (see Fig. 1.20), 

exerting a force normal to the face. Due to these stresses (also known as bulk stress),
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Fig. 1.20 Fluid element 

volume variation due to 

pressure 

the material element will deform uniformly (bulk strain) in every direction, resulting 

in a change in volume of the material element itself. Denoting the initial volume of 

the element by the symbol.V0, and the volume change by the symbol.�V , the  volume  

strain can be defined as: 

. Bulk strain =
�V

V0

.

The bulk modulus .B can be defined as the proportionality coefficient between 

pressure variation .�p the corresponding volume variation: 

. B = −
�p

�V/V0

.

Here, the minus sign is necessary to obtain a positive value of .B in case of positive 

pressure variation associated with volume decrease. Alternatively, it is possible to 

define the bulk modulus as 

. B = ρ
∂ p

∂ρ

in which . ρ is the density and . p the pressure. 

Bulk modulus is also a thermodynamic quantity. Specifically, we define the 

isothermal compressibility modulus .BT (in the case of constant temperature trans-

formation) and the isentropic compressibility modulus .BS (in the case of isentropic 

transformation). In practice, this distinction is relevant only for gases, to a lesser 

extent for liquids, and even less for solids. For an ideal gas, we define 

. BS = γ p

where . γ is the adiabatic expansion coefficient (ratio between constant pressure and 

constant volume heats).
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1.5 Numerical Calculus 

1.5.1 Taylor Series Expansion and Accuracy 

A function .φ(x) that passes through a point .x0 and has all necessary derivatives at 

that point, can be approximated, at the point .x0 by a polynomial (Taylor polynomial) 

defined as follows: 

. φk(x) = φ(x0) +
1

1!
φ′(x0)(x − x0) +

1

2!
φ′′(x0)(x − x0)

2

+
1

3!
φ′′′(x0)(x − x0)

3 + . . . +
1

k!
φ(k)(x0)(x − x0)

k .

Considering one point at a distance .�x from point . x0, it is possible to write  

. φ(x0 + �x) = φ(x0) + �x

(

∂φ

∂x

)

x0

+
(�x)2

2!

(

∂2φ

∂x2

)

x0

+
(�x)3

3!

(

∂3φ

∂x3

)

x0

+ HOT (1.21) 

having indicated by the symbol .HOT the higher-order terms. 

The error incurred when the .HOT are not considered is called the truncation 

error. Neglecting the .HOT , the error incurred is not greater than the value of the 

first derivative that is neglected. In the case where the first neglected derivative is the 

second-order derivative, the obtained value is said to be approximated to the second 

order. Considering Fig. 3.2, given the value of . φ and its corresponding derivative at 

point P, we can use the Taylor series expansion to obtain an approximate value of 

the function . φ at point E: 

. φE = φP + �PE

(

∂φ

∂x

)

P

+ HOT.

Equivalently, it is possible to use the Taylor series expansion to approximate the 

function . φ value in e: 

.φe = φP + �Pe

(

∂φ

∂x

)

P

+ HOT. (1.22) 

By neglecting these last two terms of higher order, we obtain an expression accurate 

to the second order for the behaviour of the considered quantity. In general, the term 

“accuracy” refers to the difference between the exact and the calculated solution. 

Since, in most practical cases, the exact solution is not available, we settle for con-

sidering the order of magnitude of the truncation error as a measure of accuracy. 

In the case of discretisation of equations, the order of magnitude of the truncation
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error of the discretisation scheme is the highest among the orders of magnitude of 

the truncation errors associated with each term of the equation. Note that in this 

case, accuracy differs from truncation error providing only a measure of how much 

the truncation error decreases as the size of the cells used for discretisation of the 

computational domain decreases. Specifically, considering the one-dimensional case 

of Eq. 1.22, we have an expression for .φe accurate to the second order, which means 

that the truncation error will decrease by four times if the value of .�Pe is halved. It 

is therefore clear that schemes with a higher order of accuracy can produce errors of 

smaller order of magnitude for the same distances. 

1.5.2 Mean Value Approximation 

In the one-dimensional case, considering Eq. 1.21, the variation of a quantity . φ(x)

passing through a point P contained in a control volume .VP can be expressed as: 

. φ(x) = φP + (x − xP )

(

∂φ

∂x

)

P

+
(x − xP )2

2!

(

∂2φ

∂x2

)

P

+
(x − xP )3

3!

(

∂3φ

∂x3

)

P

+ HOT.

Integrating over the control volume, one gets 

. 

∫

VP

φ(x)dV =
∫

VP

[

φP + (x − xP)

(

∂φ

∂x

)

P

+
(x − xP)2

2!

(

∂2φ

∂x2

)

P

+
(x − xP)3

3!

(

∂3φ

∂x3

)

P

+ HOT

]

dV .

Assuming that the variation law .φ(x) within the control volume is linear, all 

derivatives of order higher than the second vanish: 

. 

∫

VP

φ(x)dV =
∫

VP

[

φP + (x − xP)

(

∂φ

∂x

)

P

]

dV .

If P is the control volume centroid, it is 

. 

(

∂φ

∂x

)

P

∫

VP

(x − xP)dV = 0

and so 

.

∫

VP

φ(x)dV =
∫

VP

φPdV
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namely 

. 

∫

VP

φ(x)dV = φPVP .

Lastly, considering the mean value definition, it is 

. φ =
1

VP

∫

VP

φ(x)dV = φP

The statement asserts that the average value of the quantity .φ(x) within the control 

volume .VP equals the value of the same quantity at the centroid of the control 

volume if the variation of .φ(x) is linear or constant within the control volume .VP . If  

the variation of .φ(x) is not linear or constant, a second-order accurate approximation 

is obtained. 

1.5.3 Derivatives Approximation 

Given a function . f : [a, b] → ℜ continuously differentiable in an interval .[a, b], we  
want to approximate its first derivative at a generic point . x in .(a, b). With reference 

to Fig. 1.21, by definition, the first derivative at . x is: 

. f ′(x) = lim
h→0

f (x + h) − f (x)

h
.

The value. f ′(x) provides the slope of the tangent to. f in. x . For values of. h sufficiently 

small and positive, the quantity 

.(δ+ f )(x) =
f (x + h) − f (x)

h
(1.23) 

is called forward finite difference and it represents an approximation of . f ′(x). 

Fig. 1.21 Finite difference 

approximation . f ′(x): 
backward (continuous line), 

forward (dotted line) and 

central (dashed line). 

.m1 = (δ− f )(x), 

.m2 = (δ+ f )(x) and 

.m3 = (δ f )(x) represent the 

gradient of the straight lines
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Considering the Taylor series expansion 

. f (x + h) = f (x) − h f ′(x) + HOT,

a first order accurate approximation of . f ′(x) is: 

.(δ− f )(x) =
f (x) − f (x − h)

h
(1.24) 

named backward finite difference. Lastly, the central difference is defined as 

. (δ f )(x) =
f (x + h) − f (x − h)

2h

and it is second order accurate. 

1.5.4 Explicit and Implicit Methods 

This subsection deals with the resolution of the so-called Cauchy problems, namely 

problems of the form: find .y : I ⊂ ℜ → ℜ so that 

.

{

y′(t) = f (t, y(t)) ∀t ∈ I

y(t0) = y0
(1.25) 

where . I is an interval, . f : I × ℜ → ℜ is a function, and .y′ indicates the derivative 

of. y with respect to. t . Lastly,. t0 is a value in. I and.y0 is an assigned value called initial 

value. The problem of Cauchy (1.25) is termed  linear if the function . f (t, y) is linear 

with respect to the variable. y. Only a limited number of ordinary differential equations 

admit explicit solutions. Therefore, numerical methods are sought to approximate 

the solution for every class of ordinary differential equations that admit a solution. 

The general strategy of such methods involves dividing the integration interval . I =
[t0, T ], with.T < +∞, into.Nh sub-intervals of width.h = (T − t0)/Nh ;. h is referred 

to as the discretisation step. For each node .tn = t0 + nh (for .n = 1, . . . , Nh), the 

unknown value .un approximating .yn = y(tn) is sought. The set of values . {u0 =
y0, u1, . . . , uNh

} forms the numerical solution. 

A classic method is the forward Euler method, which generates the following 

sequence: 

. un+1 = un + h f (tn, un), n = 0, . . . , Nh − 1.

This method is derived from the differential equation in the Cauchy problem (1.25), 

considered at each node . tn with .n = 1, . . . , Nh , where the exact derivative .y
′(tn) is
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approximated by the difference quotient (1.23). Similarly, by using the difference 

quotient (1.24) to approximate .y(tn+1), we obtain the backward Euler method: 

. un+1 = un + h f (tn+1, un+1), n = 0, . . . , Nh − 1.

Summing up each step of the forward Euler and backward Euler methods yields 

another implicit one-step method termed the Crank-Nicolson method: 

. un+1 = un +
h

2

[

f (tn, un) + f (tn+1, un+1)
]

, n = 0, . . . , Nh − 1.

They are three examples of one-step methods, so called because to compute the 

numerical solution at the node.tn+1, only the information related to the previous node 

.tn is necessary. More precisely, while in the Forward Euler method, the numerical 

solution .un+1 depends solely on the previously computed value . un , in the Backward 

Euler and Crank-Nicolson methods it also depends, through . f (tn+1, un+1), on itself. 

For this reason, the former method is called explicit, while the latter two are called 

implicit (the Forward Euler and Backward Euler methods are also known respectively 

as explicit Euler and implicit Euler). 

Implicit methods are computationally more expensive than explicit ones because 

if the function. f in the Cauchy problem (1.25) is non-linear in. y, they require solving 

a non-linear problem at each time level .tn+1 to compute .un+1. On the other hand, 

implicit methods manifest better stability properties than explicit schemes. 

As an illustrative example, consider the ordinary differential equation 

. 

dy

dt
= −y2, t ∈ [0, a]

with the initial condition .y(0) = 1. Considering the discretisation .tk = a k
n
with . 0 �

k � Nh , i.e. .h = a/n, being .yk the value .y(tk). Using the Euler method, one gets 

. 

(

dy

dt

)

k

≈
yk+1 − yk

h
= −y2k

from which one can derive the explicit formula 

. yk+1 = yk − hy2k

valid for .k = 0, . . . , Nh − 1. Using the backward Euler method, it is 

.

yk+1 − yk

h
= −y2k+1
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from which one can derive the implicit formula for . yk+1

. yk+1 + hy2k+1 = yk .

Using the Crank-Nicolson method, it is 

. 

yk+1 − yk

h
= −

1

2
y2k+1 −

1

2
y2k

from which one can derive the implicit formula for . yk+1

. yk+1 +
1

2
hy2k+1 = yk −

1

2
hy2k .

Both implicit formulas can be numerically solved to compute the value of.yk+1 using, 

for example, the Newton’s algorithm. 

1.5.5 Fixed Point Iteration 

With a calculator, it’s easy to verify that repeatedly applying the cosine function 

starting from the number 1 generates the following sequence of real numbers. 

. x (1) = cos(1) = 0.54030230586814,

x (2) = cos(x (1)) = 0.85755321584639,

...

x (10) = cos(x (9)) = 0.74423735490056,

...

x (20) = cos(x (19)) = 0.73918439977149,

which tends to .α = 0.73908513 . . . Since by construction, .x (k+1) = cos(x (k)) for 

.k = 0, 1, . . . (with .x(0) = 1), . α is such that .cos(α) = α: for this reason it is called 

fixed point of the cosine function. The interest in a method that exploits iterations 

of this type is evident: if . α is a fixed point for the cosine function, then it is a zero 

of the function . f (x) = x − cos(x) and the method just proposed could be used to 

compute the zeros of . f (only one in this case).
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To better specify this intuitive idea, consider the following problem: given a func-

tion .φ : [a, b] → R, find .α ∈ [a, b] such that .α = φ(α). If such an . α exists, it is 

called a fixed point of . φ and it can be determined as the limit of the following 

sequence: 

. x (k+1) = φ(x (k)), k � 0

where .x(0) is the initial value. This algorithm is called the fixed-point iteration 

method, and . φ is called its iteration function. The introductory example is thus a 

fixed-point iteration algorithm for the function .φ(x) = cos(x).



Chapter 2 

Governing Equations of Fluid Dynamics 

The governing equations of fluid dynamics represent the mathematical formulation 

of three fundamental principles of physics: 

1. conservation of mass; 

2. Newton’s second law of motion; 

3. conservation of energy. 

2.1 Control Volume 

In applying these fundamental principles of physics to a moving fluid, it is useful to 

resort to one of the two models described below. Figure 2.1 shows a finite-sized region 

within a generic flow. This region is called the control volume, denoted as . V , and 

it is bounded by the control surface, denoted as . S. The control volume can be fixed 

in space, with the fluid passing through it, as shown in the left-hand side of Fig. 2.1, 

or it can be moving with the fluid so as to always contain the same mass of fluid, 

as shown in the right-hand side of Fig. 2.1. The equations obtained by applying the 

three fundamental principles of physics to the finite control volume—whether fixed or 

moving—are said to be in integral form. With appropriate mathematical procedures, 

the corresponding differential equations can be derived. In the case of a control 

volume fixed in space, we refer to the governing equations in conservative form, 

whether they are in integral or differential form. In the case where the conservation 

principles are applied to the control volume moving with the fluid, this is known 

as governing equations in non-conservative form, whether they are in integral or 

differential form. 

The control volume may also have infinitesimal dimensions, denoted as.dV , while 

still containing a sufficient number of molecules to allow the fluid to be treated as a 

continuous medium. As with the finite control volume, the infinitesimal control vol-

ume may be either fixed or in motion. The equations obtained by applying the three 
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Fig. 2.1 On the left, a finite control volume fixed in space. On the right, a finite control volume 

moving with the fluid 

fundamental principles of physics to the infinitesimal control volume, whether sta-

tionary or in motion, are said to be in differential form. These differential equations 

are in conservative form if derived by applying the three principles to a station-

ary infinitesimal control volume. They are in non-conservative form if derived by 

considering the infinitesimal control volume moving with the fluid. 

2.2 Substantial Derivative 

Here we aim to emphasise the physical interpretation of the concept of the substantial 

derivative. To this end, we consider the motion of an infinitesimal control volume in 

Cartesian space. 

Indicating with . i, . j and . k the unit vectors of the three coordinate axes . x , . y and 

. z, it is possible to express the velocity vector as .V = ui + vj + wk. In the case of 

non-stationary motion, the three components of the velocity vector are functions of 

both space and time. 

. u = u(x, y, z, t),

. v = v(x, y, z, t),

. w = w(x, y, z, t).

In addition to this, the motion is characterised by a scalar field of density also depen-

dent on both space and time 

. ρ = ρ(x, y, z, t).

As shown in Fig. 2.2, the infinitesimal control volume at time . t1 is located at point 1 

where the density has the value .ρ1 = ρ(x1, y1, z1, t1).
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Fig. 2.2 Infinitesimal 

control volume at two 

successive moments in time 

At a later time . t2, the  same infinitesimal control volume is located at point 2 

where the density has the value .ρ2 = ρ(x2, y2, z2, t2). Since the density . ρ is a scalar 

function, its Taylor series expansion can be written as 

. ρ2 = ρ1 +

(
∂ρ

∂x

)

1

(x2 − x1) +

(
∂ρ

∂y

)

1

(y2 − y1) +

(
∂ρ

∂z

)

1

(z2 − z1)

+

(
∂ρ

∂t

)

1

(t2 − t1) + H OT .

By dividing it by .(t2 − t1) and neglecting the terms of higher order, we obtain 

. 

ρ2 − ρ1

t2 − t1
=

(
∂ρ

∂x

)

1

(
x2 − x1

t2 − t1

)

+

(
∂ρ

∂y

)

1

(
y2 − y1

t2 − t1

)

+

(
∂ρ

∂z

)

1

(
z2 − z1

t2 − t1

)

+

(
∂ρ

∂t

)

1

(2.1) 

which, looking at the left-hand side, represents the average variation of density over 

time that the infinitesimal control volume undergoes moving from point 1 to point 

2. The limit of the quotient on the left-hand side of Eq. 2.1 as .t2 approaches .t1 is 

indicated by the symbol .Dρ/Dt : 

. lim
t2→t1

(
ρ2 − ρ1

t2 − t1

)

≡
Dρ

Dt

and represents the instantaneous variation of density that the infinitesimal control 

volume undergoes moving from point 1 to point 2. The symbol .D/Dt is called the 

substantial derivative. The substantial derivative is completely different from the 

partial derivative of the density with respect to time at point 1 .(∂ρ/∂t)1 because the 

latter represents the instantaneous variation of the density at the fixed point 1: in 

other words, the partial derivative measures the variations at a point fixed in both 

space and time due to the sole dependence on the time variable . t . The substantial
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derivative measures the instantaneous variations of density when the infinitesimal 

volume moves in space from one position to another. 

Returning to Eq. 2.1, we note that by taking the limit as .t2 → t1, we obtain 

. 

Dρ

Dt
= u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+

∂ρ

∂t
,

noting that 

. lim
t2→t1

(
x2 − x1

t2 − t1

)

≡ u,

. lim
t2→t1

(
y2 − y1

t2 − t1

)

≡ v,

. lim
t2→t1

(
z2 − z1

t2 − t1

)

≡ w.

Therefore, the substantial derivative in Cartesian coordinates can be written as 

. 

D

Dt
≡ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
+

∂

∂t
.

In Cartesian coordinates, the operator .∇ can be written as 

. ∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

from which 

.

D

Dt
≡

∂

∂t
+ (V · ∇) (2.2) 

which is the vector form of the substantial derivative and it is therefore valid in any 

reference system. To better clarify the concepts expressed by Definition 2.2, consider 

a domain of interest characterised by a specific velocity field that at each point takes 

the value of the vector . V. In the same domain of interest, there is a generic property 

(for example, temperature) that varies both with respect to space and time. The 

instantaneous variation of the generic property associated with the mass contained 

in an infinitesimal moving volume—the substantial derivative—is equal to the sum 

of two contributions: 

1. the local derivative .∂/∂t , i.e., the instantaneous variation at the considered point 

due to the time dependence of the property; 

2. the convective derivative .V · ∇, i.e., the variation due to the displacement of the 

infinitesimal element which, as time passes, moves, due to the aforementioned 

velocity field, to a point where the property has a different value.
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In other words, the generic property associated with the mass contained in an infinites-

imal element has changed over time both because the property itself varies over time 

and because, due to the velocity field . V, the infinitesimal element has moved to a 

point in the domain where the value of the property is different. As mentioned, the 

substantial derivative can be applied to any property of the fluid such as temperature, 

pressure, etc. Considering the temperature, it can be written 

. 

DT

Dt
≡

∂T

∂t
+ (V · ∇) T = u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
+

∂T

∂t

in which the temperature variation of an infinitesimal fluid element, when it moves 

from one point to another, is due to the temperature variation with time (term.∂T/∂t) 

and to the infinitesimal fluid element movement to points characterised by different 

temperature values. 

2.3 The Physical Meaning of the Velocity Divergence 

As in the previous section, a control volume moving with the fluid is considered. 

Although such a control volume always contains the same mass, its dimension . V

and its bounding surface. S vary as the position changes since the density. ρ of the fluid 

varies from point to point. In Fig. 2.3 such a control volume is shown at a generic 

instant of time. Also in the same figure, an infinitesimal element .d S of the control 

surface . S is shown. The infinitesimal element .d S will cover a space .V �t in a time 

.�t due to the velocity .V with which the fluid moves. Therefore, considering the 

volume increase .�V due to the motion of the only element .d S, this will be equal 

to the volume of the cylinder having as base the element .d S and as height the value 

.(V�t) · n being . n the unit vector normal to the infinitesimal element .d S. In formulas  

. �V = [(V�t) · n] d S = (V�t) · dS

having indicated with .dS the product .n d S. To obtain the total volume variation, 

it will be necessary to sum the contributions due to all the infinitesimal surface 

elements, that is, it will be necessary to calculate the following surface integral: 

Fig. 2.3 Control volume 

moving with the fluid
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. 

∮

S

(V�t) · dS.

Dividing this integral by the time interval .�t , we obtain the instantaneous variation 

of the volume considered due to the displacement. This is precisely the definition of 

substantial derivative applied to the volume . V . In formulas  

. 

DV

Dt
=

1

�t

∮

S

(V�t) · dS =

∮

S

V · dS.

Applying the divergence theorem, we get 

. 

DV

Dt
=

∮

S

V · dS =

∫

V

(∇ · V) dV .

If instead of the volume . V , we were to consider an infinitesimal volume .δV and if 

this were so small as to be able to consider the value of .∇ · V constant within it, then 

we could write 

. 

D (δV )

Dt
=

∫

δV

(∇ · V) dV = (∇ · V) δV

that is 

.∇ · V =
1

δV

D (δV )

Dt
(2.3) 

which says that the divergence of the velocity is equal to the substantial derivative 

applied to the infinitesimal volume .δV divided by the measure of the infinitesimal 

volume itself. In other words, the divergence of the velocity is equal to the time vari-

ation, per unit of volume, of the measure of the volume occupied by an infinitesimal 

mass of fluid due to the movement of the fluid itself (see also Sect. 1.1.2). 

2.4 The Continuity Equation 

If we denote by infinitesimal fluid element the infinitesimal control volume moving 

with the fluid, then the mass contained in it will be constant and equal to .δm and 

its volume can be indicated by the symbol .δV as in the previous section. Indicating 

with the symbol . ρ the density, we can write 

. δm = ρδV .

Since the amount of mass contained in the fluid element is always the same, its vari-

ation due to the movement of the fluid will be null. As a consequence, its substantial 

derivative will also be null:
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Fig. 2.4 Finite control 

volume and infinitesimal 

control volume fixed in space 

. 

D (δm)

Dt
=

D (ρδV )

Dt
= δV

Dρ

Dt
+ ρ

D (δV )

Dt
= 0,

that is 

. 

Dρ

Dt
+ ρ

[
1

δV

D (δV )

Dt

]

= 0

which, recalling Eq. 2.3, becomes 

. 

Dρ

Dt
+ ρ∇ · V = 0

which is the continuity equation in non-conservative differential form. In order to 

write the continuity equation in integral conservative form, we now consider a finite 

control volume.V fixed and stationary in space as shown in Fig. 2.4. It will be bounded 

by the control surface. S on which it will be possible to define an infinitesimal element 

identified by the vector .dS and characterised by the velocity .V as in the previous 

section. Within the control volume, it will be possible to define an infinitesimal 

volume element .dV . 

The principle of mass conservation applied to this control volume implies the 

balance between the net mass flow rate exiting through the surface. S and the decrease 

in mass contained in the control volume itself. 

In general, the mass flow rate through a surface is equal to the product of density, 

surface area, and the component of the velocity normal to the surface. In the case of 

the infinitesimal element .d S, it will be: 

. ρVnd S = ρV · dS.

Considering that the vector .dS points out of the control volume, the product . ρV · dS

will be positive when the mass is leaving the control volume and negative otherwise. 

The net flux that crosses the entire surface . S will be the sum of the contributions of 

all the infinitesimal elements that make it up, namely 

.

∮

S

ρV · dS.
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To quantify the variation of the mass contained in the control volume, one can note 

that the mass contained in an infinitesimal volume element .dV is equal to .ρdV , and 

therefore, the total mass contained in the control volume is 

. 

∫

V

ρdV .

Considering the decrease in mass contained in the control volume equal to 

. −
∂

∂t

∫

V

ρdV ,

the principle of mass conservation applied to this control volume.V can be expressed 

as 

. 

∮

S

ρV · dS = −
∂

∂t

∫

V

ρdV

or 

.

∮

S

ρV · dS +
∂

∂t

∫

V

ρdV = 0 (2.4) 

which is the continuity equation in integral conservative form. This form is called 

conservative because, as will be seen more clearly later, it only contains conserved 

variables (in this case . ρ and .ρV). Given that the control volume is fixed in space— 

both in terms of position and in terms of shape and size—in Eq. 2.4, it is possible 

to bring the partial derivative inside the integral sign. Applying also the divergence 

theorem to the first term on the left-hand side of Eq. 2.4 one gets 

. 

∮

S

ρV · dS =

∫

V

∇ · (ρV) dV .

At this point, Eq. 2.4 can be rewritten as 

. 

∫

V

∂ρ

∂t
dV +

∫

V

∇ · (ρV) dV = 0

that is 

. 

∫

V

∂ρ

∂t
+ ∇ · (ρV) dV = 0.

Given the arbitrariness of the choice of the control volume, the cancellation of this 

integral is equivalent to the cancellation of the integrand, namely: 

.

∂ρ

∂t
+ ∇ · (ρV) = 0 (2.5) 

which is the continuity equation in differential conservative form.
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2.5 Conservation of Momentum 

To determine this equation, Newton’s second law will be applied to an infinitesimal 

fluid element in motion, as shown in Fig. 2.5. When applied to a moving fluid element, 

Newton’s second law states that the resultant of the forces . F applied on the element 

is equivalent to its total mass .m multiplied by its acceleration . a. Newton’s second 

law is a vector relation, of which, for now, only the component in the direction of 

the x-axis is considered: 

.Fx = max (2.6) 

so, the component along the x-axis of all the forces .Fx acting on the element is equal 

to its mass .m multiplied by its acceleration .ax along the x-axis. The forces acting on 

the element can be of two types: 

1. Mass forces, such as gravitational, electrical, or magnetic forces. 

2. Surface forces, which are those forces that act on the surface that delimits the 

considered element and that can be further divided into two classes: pressure 

forces and friction forces. 

Indicating with the symbol . f the resultant of the mass forces per unit of mass acting 

on the element, . fx will be the component along the x-axis. If we denote with . ρ the 

density and considering the volume of the infinitesimal element equal to the product 

.dxdydz, it will be 

.component along x of the resultant mass f orces = ρ fx dx dy dz. (2.7) 

Figures 2.6 and 2.7 show the two friction-related stresses for the .xy plane only. 

It is useful to recall that stress is defined as a force per unit area. The shear stress, 

denoted by the symbol .τyx , determines the deformation of the fluid element over 

time; the normal stress, denoted by the symbol .τxx , determines the change in volume 

that the fluid element undergoes over time. Both the shear stress and the normal 

stress are due to the velocity gradients present in the fluid, although the normal stress 

is generally negligible compared to the shear stress. They are an exception in cases 

Fig. 2.5 Infinitesimal fluid 

element in motion
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Fig. 2.6 Stresses due to 

friction: normal stress and 

corresponding deformation 
xx 

z 

y 

x 

Fig. 2.7 Stresses due to 

friction: shear stress and 

corresponding deformation 

z 

y 

x 

yx 

Fig. 2.8 Shear stress on the 

faces normal to the y-axis 

where there are strong velocity gradients in the same direction as the main flow (i.e. 

shocks). 

Referring to Fig. 2.5, with the symbol .τi j , we will denote the stress in direction 

. j exerted on the plane having as normal the direction . i . Looking at Figs. 2.5 and 

2.8, the only force .τyx dx dz acting on face .abcd is that due to the shear stress .τyx . 

Correspondingly, on face .e f gh, distant .dy from .abcd, the only acting force will be 

.

[

τyx +
∂τyx

∂y
dy

]

dx dz. 

To determine the direction of application of these forces, it is assumed that the 

three components of velocity .u, v, w increase in the positive direction of the three
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Fig. 2.9 Normal stress due 

to the velocity gradient 

Fig. 2.10 Contribution of 

pressure 

axes (see Fig. 2.5). Considering the component . u, it will increase in the positive 

direction of the x-axis, and in the .xy plane it will increase in the positive direction of 

the y-axis, and in the .xz plane it will increase in the positive direction of the z-axis. 

Therefore, considering the face .e f gh, the  . u component immediately above it will 

be greater than that on the face itself, causing it to feel a dragging effect that tends 

to increase velocity: the direction of the shear stress on this face will be that of the 

positive x-axis. If, on the other hand, the face .abcd is considered, the component 

. u immediately below it will be less than that on the face itself, causing it to feel a 

dragging effect that tends to reduce the velocity: the direction of the shear stress on 

this face will be in the negative direction of the x-axis. 

Looking at Figs. 2.9 and 2.10, the  . u component immediately to the right of the 

face .bcg f will be greater than that on the face itself, causing it to feel a dragging
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Fig. 2.11 Shear stress on the 

faces normal to the z-axis 

effect that tends to increase the velocity: the direction of the normal stress on this 

face will be the positive direction of the x-axis. If we consider the face .adhe, the  

component . u immediately to the left of it will be less than that on the face itself, 

causing it to feel a dragging effect that tends to reduce the velocity: the direction of 

the normal stress on this face will be the negative direction of the x-axis. Following 

this logic, it is possible to determine the directions of application of all the forces 

due to friction. In particular, referring to Fig. 2.11, on the face .dcgh the direction 

of the stress .τzy will be negative while on the face .ab f e the direction of the stress 

.

(

τzx +
∂τzx

∂z
dz

)

dx dy will be positive. 

As for the pressure forces, we refer to the Figs. 2.5 and 2.10. Since we are con-

sidering only the component along . x of all the forces acting on the element, the 

only faces for which the contribution of the pressure is not null are .bcg f and .adhe. 

Considering the contribution of the pressure always directed towards the inside of 

the element, on the face .adhe the force due to the pressure will be directed in the 

positive direction of the x-axis and equal to .p dy dz. On the face .bcg f the force 

due to the pressure will be directed in the negative direction of the x-axis and equal 

to .
[

p +
∂ p

∂x
dx

]

dy dz. Adding up the contributions described so far, we obtain .Fx , 

which is the component in the direction of the x-axis of the total force acting on the 

element: 

.Fx =

[

p −

(

p +
∂ p

∂x
dx

)]

dy dz

+

[(

τxx +
∂τxx

∂x
dx

)

− τxx

]

dy dz
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+

[(

τyx + 
∂τyx 

∂y 
dy

)

− τyx

]

dx dz  

+

[(

τzx + 
∂τzx 

∂z 
dz

)

− τzx

]

dx dy 

+ ρ fx dx dy dz  

from which 

. Fx =

(

−
∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

dx dy dz + ρ fx dx dy dz

represents the element on the left-hand side of Eq. 2.6. As for the remaining part of 

Eq. 2.6, the  mass .m of the element will be 

. m = ρ dx dy dz

while its acceleration .ax is the variation over time of the velocity . u of a moving fluid 

element. 

By definition, .ax will therefore be equal to the substantial derivative applied to . u: 

. ax =
Du

Dt
.

It is now possible to write Eq. 2.6 as 

.ρ
Du

Dt
= −

∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρ fx (2.8) 

and, considering the remaining two coordinate directions 

.ρ
Dv

Dt
= −

∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρ fy, (2.9) 

.ρ
Dw

Dt
= −

∂ p

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρ fz . (2.10) 

The Eqs. 2.8, 2.9 and 2.10 are scalar equations named Navier–Stokes equations. They  

are in non-conservative form because they are obtained from the direct application 

of Newton’s second law to an infinitesimal fluid element in motion. To obtain the 

corresponding conservative form, it can be noted that by definition of substantial 

derivative, it is 

.ρ
Du

Dt
= ρ

∂u

∂t
+ ρV · ∇u. (2.11) 

Moreover, considering the variation over time of the only component in x of the 

momentum, it will be
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. 

∂(ρu)

∂t
= ρ

∂u

∂t
+ u

∂ρ

∂t
,

that is 

. ρ
∂u

∂t
=

∂(ρu)

∂t
− u

∂ρ

∂t

corresponding to the first term on the right-hand side in Eq. 2.11. Again, remembering 

the rule for calculating the divergence of the product of a scalar times a vector, 

. ∇ · (ρuV) = u∇ · (ρV) + (ρV) · ∇u,

from which 

. ρV · ∇u = ∇ · (ρuV) − u∇ · (ρV)

corresponding to the second term on the right-hand side in Eq. 2.11 which can now 

be written as 

. ρ
Du

Dt
=

∂(ρu)

∂t
− u

∂ρ

∂t
+ ∇ · (ρuV) − u∇ · (ρV).

which, when rearranged, becomes 

. ρ
Du

Dt
=

∂(ρu)

∂t
− u

[
∂ρ

∂t
+ ∇ · (ρV)

]

+ ∇ · (ρuV).

The terms within the square brackets are nothing more than the left-hand side of the 

continuity equation in conservative differential form Eq. 2.5 so they can be eliminated 

leading to write 

. ρ
Du

Dt
=

∂(ρu)

∂t
+ ∇ · (ρuV).

Substituting this into the first of the three Navier-Stokes equations, we get 

.

∂(ρu)

∂t
+ ∇ · (ρuV) = −

∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρ fx . (2.12) 

Recalling Eq. 1.1, it can be written 

. div V = ∇ · V =

3
∑

i=1

∂

∂xi

Vi =
∂V1

∂x1
+

∂V2

∂x2
+

∂V3

∂x3
=

∂u

∂x
+

∂v

∂y
+

∂w

∂z

and, consequently 

.div (ρuV) = ∇ · (ρuV) =
∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw).
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At this stage, Eq. 2.12 may be expressed in its extended form as 

. 
∂(ρu)

∂t
+

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = −

∂ p

∂x
+

∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ ρ fx .

(2.13) 

In a similar manner, taking into account the remaining two Navier–Stokes equations, 

we have 

.

∂(ρv)

∂t
+ ∇ · (ρvV) = −

∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρ fy, (2.14) 

.

∂(ρw)

∂t
+ ∇ · (ρwV) = −

∂ p

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρ fz (2.15) 

and, in extended form 

.
∂(ρv)

∂t
+

∂

∂x
(ρvu) +

∂

∂y
(ρvv) +

∂

∂z
(ρvw) = −

∂ p

∂y
+

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ ρ fy, (2.16) 

.
∂(ρw)

∂t
+

∂

∂x
(ρwu) +

∂

∂y
(ρwv) +

∂

∂z
(ρww) = −

∂ p

∂z
+

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ ρ fz . (2.17) 

Equations 2.12, 2.14 and 2.15 or, equivalently, Eqs. 2.13, 2.16 and 2.17, together 

constitute the Navier–Stokes equations in conservative differential form. Using vector 

notation, it is possible to express these same equations in a more compact form as 

. 

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + ∇ · τ + fb

where the symbol . τ represents the viscous stress tensor as defined: 

. τ =

⎡

⎣

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎤

⎦ .

2.5.1 Newtonian Fluids 

To summarise what was initially presented in Sects. 1.2.3 and 1.2.4, Newtonian are 

those fluids for which 

• the shear stress is zero when the fluid is still or with a null velocity gradient; 

• it is possible to define a proportionality constant—called dynamic viscosity and 

indicated by the symbol . µ—between shear stress and velocity gradient. In other 

words, it is possible to define a linear relationship between stresses and strain rates 

(see Sect. 1.2.1);
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• the value of dynamic viscosity does not depend on the direction considered for the 

gradient calculation (i.e., the fluid is isotropic). 

For such fluids (see also Sect. 1.2.4), it is possible to express the tensor of viscous 

stresses as 

.τ = µ
[

∇V + (∇V)T
]

+ λ (∇ · V) I (2.18) 

where the symbol. I represents the identity matrix. The symbol. λ represents the volume 

or dilatational viscosity, which has the dimensions of dynamic viscosity. Volume 

viscosity is null for incompressible fluids, and it measures the viscous resistance 

of a (compressible) fluid to volume variation. Volume viscosity is important only 

when the fluid is rapidly compressed or expanded, as in the case of sound or shock 

waves (see also Sect. 1.4.2). Volume viscosity explains the energy loss of these 

types of waves, as described by Stokes’ law on sound attenuation. Stokes himself 

hypothesised to be 

. λ = −
2

3
µ.

In a Cartesian reference frame, Eq. 2.18 can be expressed as 

.τ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2µ
∂u

∂x
+ λ∇ · V µ

(
∂v

∂x
+

∂u

∂y

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂v

∂x
+

∂u

∂y

)

2µ
∂v

∂x
+ λ∇ · V µ

(
∂w

∂y
+

∂v

∂z

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂w

∂y
+

∂v

∂z

)

2µ
∂z

∂x
+ λ∇ · V

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.19) 

in which the viscous stresses have been expressed as 

.τxx = λ∇ · V + 2µ
∂u

∂x
, (2.20) 

. τyy = λ∇ · V + 2µ
∂v

∂y
,

. τzz = λ∇ · V + 2µ
∂w

∂z
,

. τxy = τyx = µ

(
∂v

∂x
+

∂u

∂y

)

,

.τxz = τzx = µ

(
∂u

∂z
+

∂w

∂x

)

,
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.τzy = τyz = µ

(
∂w

∂y
+

∂v

∂z

)

. (2.21) 

The dynamic viscosity . µ is, in other words, the resistance of a fluid to flow. It is 

worth mentioning that the assumption of an isotropic fluid has allowed the setting 

of .τxy = τyx , .τxz = τzx , .τzy = τyz , which results in the symmetry of the stress tensor 

. τ . In the case of an incompressible flow, the divergence of the velocity will be null, 

and Eq. 2.19 can be expressed as 

.τ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

2µ
∂u

∂x
µ

(
∂v

∂x
+

∂u

∂y

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂v

∂x
+

∂u

∂y

)

2µ
∂v

∂x
µ

(
∂w

∂y
+

∂v

∂z

)

µ

(
∂u

∂z
+

∂w

∂x

)

µ

(
∂w

∂y
+

∂v

∂z

)

2µ
∂z

∂x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.22) 

Using the notation based on indices, it is possible to express the elements of Eq. 2.22 

as 

.τi j = µsi j = µ

(
∂ui

∂x j

+
∂u j

∂xi

)

. (2.23) 

The convention used for this notation assumes that . i or . j = 1 correspond to the first 

coordinate direction (. x), . i or . j = 2 correspond to the second coordinate direction 

(. y), and . i or . j = 3 correspond to the third coordinate direction (. z). As an example 

. τ12 = τxy = µ

(
∂u1

∂x2
+

∂u2

∂x1

)

= µ

(
∂u

∂y
+

∂v

∂x

)

.

In conclusion, for a Newtonian fluid, the equation of momentum conservation can 

be expressed as 

. 

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + ∇ ·

{

µ
[

∇V + (∇V)T
]}

+ ∇ (λ∇ · V) + fb

and, in the case of incompressible flow 

. 

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + ∇ · µ

[

∇V + (∇V)T
]

+ fb.

Ultimately, in the case where the viscosity is also constant, there is a further simpli-

fication: 

.

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇ p + µ∇2V + fb. (2.24)
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2.6 Energy Conservation Equation 

To determine this equation, the first law of thermodynamics will be applied to the 

infinitesimal fluid element in motion shown in Fig. 2.5. Indicating with the symbol A 

the variation of energy within the fluid element, with the symbol B the net inflow of 

thermal energy into the fluid element, and with C the work done by the mass forces 

and the surface forces, the first law of thermodynamics applied to an infinitesimal 

fluid element in motion can be expressed as 

.A = B + C. (2.25) 

Initially, considering the term C, it can be noted that the work done by a force on 

a moving body is equal to the product of the force itself and the component of 

the body’s velocity in the direction of application of the force. Taking into account 

Eq. 2.7, the work done by the mass forces can be expressed as 

. ρf · V(dx dy dz).

As for the contribution of surface forces (pressure, shear, and normal stress), initially 

only the component of such forces in the .x-direction is considered. Figures 2.12, 

2.13, 2.14, 2.15 show the work done by the component in the .x-direction of such 

forces to be equal to their product with the . u component in the same direction of 

the velocity . V. Assuming the . u component of the velocity is oriented in the positive 

direction of the x-axis, the work done by surface forces will be positive if they are 

also oriented in the positive direction of the x-axis, and it will be negative if oriented 

in the negative direction of the x-axis. 

Fig. 2.12 Work done by 

pressure forces in the x 

direction
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Fig. 2.13 Work done 

considering only the x 

direction and only the faces 

.adhe and . bcg f

Fig. 2.14 Work done 

considering only the x 

direction and only the faces 

.abcd and . e f gh

In the case of pressure forces, the resultant of the work done by them, considering 

only the .x-direction, will be 

. 

[

up −

(

up +
∂(up)

∂x
dx

)]

dy dz = −
∂(up)

∂x
dx dy dz.

In the case of shear stress, the resultant of the work done, considering only the 

.x-direction and only the faces .abcd and .e f gh, will be 

.

[

uτyx −

(

uτyx +
∂(uτyx )

∂y
dy

)]

dx dz =
∂(uτyx )

∂y
dx dy dz.
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Fig. 2.15 Work done 

considering only the x 

direction and only the faces 

.ab f e and . cdhg

Considering all the surfaces and all the surface forces, we derive: 

. 

[

−
∂(up)

∂x
+

∂(uτxx )

∂x
+

∂(uτyx )

∂y
+

∂(uτzx )

∂z

]

dx dy dz.

Now, considering the contributions of all the forces in the three coordinate directions, 

we derive the expression for term C of Eq. 2.25: 

. C =

[

−

(
∂(up)

∂x
+

∂(vp)

∂y
+

∂(wp)

∂z

)

+
∂(uτxx )

∂x
+

∂(uτyx )

∂y
+

∂(uτzx )

∂z

+
∂(vτxy)

∂x
+

∂(vτyy)

∂y
+

∂(vτzy)

∂z

+
∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z

]

dx dy dz + ρf · V(dx dy dz).

We now consider term B of Eq. 2.25. The flux of thermal energy that affects the 

fluid element can be of a volumetric type, that is, due to the presence inside it of 

sources/sinks of energy (i.e., chemical reactions, nuclear processes, electromagnetic 

irradiation), or it can be due to conductive thermal phenomena present on the faces 

that delimit it. Let . q̇ as the rate of volumetric heat addition per unit mass. The total 

heat generated inside the fluid element is
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Fig. 2.16 Total thermal flux 

that crosses the fluid element 

by conduction in the 

direction of the x-axis 

. ρ q̇ dx dy dz.

Initially, considering only the direction of the x-axis and assuming the thermal flux 

due to conduction is always oriented in the positive direction of the same axis, the 

heat .q̇x dy dz passes across the face .aedh. Let  .q̇x be the heat flux per unit of time 

and per unit of surface transmitted by conduction. The total heat flux that crosses the 

fluid element by conduction in the direction of the x-axis will be (Fig. 2.16) 

. 

[

q̇x −

(

q̇x +
∂q̇x

∂x
dx

)]

dy dz = −
∂q̇x

∂x
dx dy dz.

Now, considering the contributions in the three coordinate directions, one derives the 

expression for term B of Eq. 2.25: 

. B =

[

ρq̇ −

(

q̇x +
∂q̇x

∂x
+

∂q̇y

∂y
+

∂q̇z

∂z

)]

dx dy dz.

If now the terms .q̇x , q̇y, q̇z are considered proportional through the thermal conduc-

tivity coefficient . k to the local gradient of temperature, then we have 

. q̇x = −k
∂T

∂x
; q̇y = −k

∂T

∂y
; q̇z = −k

∂T

∂z

and therefore
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. B =

[

ρq̇ +
∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)]

dx dy dz.

Finally, term A of Eq. 2.25 is considered. The total energy per unit of mass of the 

moving fluid element is equal to the sum of its internal energy per unit of mass, 

indicated by the symbol . e, and its kinetic energy per unit of mass, . V
2

2
. Since we are 

considering a moving fluid element, the time variation of its total energy is expressed 

by a substantial derivative. Therefore, considering the mass of the fluid element to 

be equal to .ρ dx dy dz, it will  be  

. A = ρ
D

Dt

(

e +
V 2

2

)

dx dy dz.

Now, Eq. 2.25 can be expressed as 

. ρ
D

Dt

(

e +
V 2

2

)

= ρq̇ +
∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

−
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z

+
∂(uτxx )

∂x
+

∂(uτyx )

∂y
+

∂(uτzx )

∂z

+
∂(vτxy)

∂x
+

∂(vτyy)

∂y
+

∂(vτzy)

∂z

+
∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z
+ ρf · V. (2.26) 

Equation 2.26 is the energy conservation equation in non-conservative form in terms 

of total energy .e + V 2

2
. To obtain the same equation in terms of the solely internal 

energy, one can multiply the Navier–Stokes Eqs. 2.8, 2.9, and 2.10 respectively by 

. u, . v, and . w, resulting in 

.ρ

D

(
u2

2

)

Dt
= −u

∂ p

∂x
+ u

∂τxx

∂x
+ u

∂τyx

∂y
+ u

∂τzx

∂z
+ uρ fx , (2.27) 

.ρ

D

(
v2

2

)

Dt
= −v

∂ p

∂y
+ v

∂τxy

∂x
+ v

∂τyy

∂y
+ v

∂τzy

∂z
+ vρ fy, (2.28) 

.ρ

D

(
w2

2

)

Dt
= −w

∂ p

∂z
+ w

∂τxz

∂x
+ w

∂τyz

∂y
+ w

∂τzz

∂z
+ wρ fz . (2.29)
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Keeping in mind that .V 2 = u2 + v2 + w2, Eqs.  2.27, 2.28, and 2.29, summed 

together, result in the expression 

. ρ

D

(
V 2

2

)

Dt
= − u

∂ p

∂x
− v

∂ p

∂y
− w

∂ p

∂z

+ u

(
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

)

+ v

(
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z

)

+ w

(
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z

)

+ ρf · V

Remembering that .ρf · V = ρ
(

u fx + v fy + w fz

)

, substituting in Eq. 2.26 yields 

. ρ
De

Dt
= ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ τxx

∂u

∂x
+ τyx

∂u

∂y
+ τzx

∂u

∂z

+ τxy

∂v

∂x
+ τyy

∂v

∂y
+ τzy

∂v

∂z

+ τxz

∂w

∂x
+ τyz

∂w

∂y
+ τzz

∂w

∂z
(2.30) 

which is the energy conservation equation in non-conservative form in terms of 

internal energy . e. A careful observer will note the absence of the term due to vol-

ume forces from this form of the energy conservation equation. Remembering the 

expressions from (2.20) to (2.21), and in particular setting .τxy = τyx , .τxz = τzx , and 

.τzy = τyz , we can express 

. ρ
De

Dt
= ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ τxx

∂u

∂x
+ τyy

∂v

∂y
+ τzz

∂w

∂z

+ τxy

(
∂u

∂y
+

∂v

∂x

)

+ τzx

(
∂u

∂z
+

∂w

∂x

)

+ τzy

(
∂v

∂z
+

∂w

∂y

)

and again
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. ρ
De

Dt
= ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)2

+ µ

[

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
]

(2.31) 

which is still the energy conservation equation in non-conservative form in terms of 

the internal energy . e only, in which only flow variables appear. In order to obtain 

the conservative form of the energy conservation equation in terms of the internal 

energy . e, the expression for the substantial derivative is considered: 

. ρ
De

Dt
= ρ

∂e

∂t
+ ρV · ∇e.

Recalling that 

. 

∂(ρe)

∂t
= ρ

∂e

∂t
+ e

∂ρ

∂t
⇒ ρ

∂e

∂t
=

∂(ρe)

∂t
− e

∂ρ

∂t

and that 

. ∇ · (ρeV) = e∇ · (ρV) + ρV · ∇e ⇒ ρV · ∇e = ∇ · (ρeV) − e∇ · (ρV) ,

it is 

.ρ
De

Dt
=

∂(ρe)

∂t
− e

[
∂ρ

∂t
+ ∇ · (ρV)

]

+ ∇ · (ρeV) . (2.32) 

Noticing that the term in square brackets in Eq. 2.32 is null due to the continuity 

equation, we can express 

.ρ
De

Dt
=

∂(ρe)

∂t
+ ∇ · (ρeV) (2.33) 

which, substituted into Eq. 2.31, yields the energy conservation equation in conser-

vative form in terms of the internal energy . e:
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. 

∂(ρe)

∂t
+ ∇ · (ρeV) = ρq̇ +

∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

− p

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

+ λ

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)2

+ µ

[

2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+

(
∂u

∂y
+

∂v

∂x

)2

+

(
∂u

∂z
+

∂w

∂x

)2

+

(
∂v

∂z
+

∂w

∂y

)2
]

.

(2.34) 

The same procedure, applied to the total energy .e + V 2

2
, results in 

.ρ

D

(

e +
V 2

2

)

Dt
=

∂

∂t

[

ρ

(

e +
V 2

2

)]

+ ∇ ·

[

ρ

(

e +
V 2

2

)

V

]

(2.35) 

which, substituted into Eq. 2.26, yields the energy conservation equation in conser-

vative form in terms of the total internal energy .e + V 2

2
: 

. 
∂

∂t

[

ρ

(

e +
V 2

2

)]

+ ∇ ·

[

ρ

(

e +
V 2

2

)

V

]

= ρq̇

+
∂

∂x

(

k
∂T

∂x

)

+
∂

∂y

(

k
∂T

∂y

)

+
∂

∂z

(

k
∂T

∂z

)

−
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z

+
∂(uτxx )

∂x
+

∂(uτyx )

∂y
+

∂(uτzx )

∂z

+
∂(vτxy)

∂x
+

∂(vτyy)

∂y
+

∂(vτzy)

∂z

+
∂(wτxz)

∂x
+

∂(wτyz)

∂y
+

∂(wτzz)

∂z

+ ρf · V. (2.36) 

Those shown here are not the only possible expressions of the equation of energy: 

an example is the representation as a function of enthalpy or total enthalpy, which is 

not reported here for brevity.



70 2 Governing Equations of Fluid Dynamics

2.7 Considerations on the Governing Equations 

The equations considered so far account for dissipative phenomena due to viscosity 

and to thermal conductivity. The fluid considered is homogeneous, and there are no 

chemical reactions; otherwise, it would be necessary to consider also additional con-

servation equations of mass and momentum related to the various chemical species 

present. The energy equation, too, would, in this case, show the presence of addi-

tional terms related to transport and diffusion of various chemical species. When it 

is possible to ignore the phenomena related to viscosity, the flow is said to be non-

viscous or inviscid. Table 2.1 summarises the governing equations for compressible, 

three-dimensional, non-viscous, and unsteady flows: it is evident that such equations 

are derivable from those seen in the previous sections by eliminating the terms due 

to viscosity. 

Some observations. 

• The governing equations analysed so far constitute a system of differential non-

linear equations for which there is no analytical solution. 

• In the case of momentum and energy conservation equation the two conservative 

and non-conservative forms differ only in the terms on the left hand side. 

Table 2.1 Summary table of governing equations for non-viscous flows 

Equation Non-conservative form Conservative form 

Conservation of mass .
Dρ

Dt
+ ρ∇ · V = 0 . 

∂ρ

∂t
+ ∇ · (ρV) = 0

Conservation of momentum 

(in x) 

.ρ
Du

Dt
= −

∂ p
∂x

+ ρ fx . 
∂(ρu)

∂t
+ ∇ · (ρuV) =

−
∂ p
∂x

+ ρ fx

Conservation of momentum 

(in y) 

.ρ
Dv

Dt
= −

∂ p
∂y

+ ρ fy . 
∂(ρv)

∂t
+ ∇ · (ρvV) =

−
∂ p
∂y

+ ρ fy

Conservation of momentum 

(in z) 

.ρ
Dw

Dt
= −

∂ p
∂z

+ ρ fz . 
∂(ρw)

∂t
+ ∇ · (ρwV) =

−
∂ p
∂z

+ ρ fz

Energy conservation .ρ
D

Dt

(

e +
V 2

2

)

= . 
∂

∂t

[

ρ

(

e +
V 2

2

)]

+ ∇ ·

[

ρ

(

e +
V 2

2

)

V

]

=

.ρq̇ −
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z
+ ρf · V

.ρq̇ −
∂(up)

∂x
−

∂(vp)

∂y
−

∂(wp)

∂z
+ ρf · V
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• The conservative form always contains a divergence term among those on the left 

hand side—for example .∇ · (ρV) or .∇ · (ρuV). For this reason, the equations in 

conservative form are also called equations in divergence form. 

• Normal and shear stresses depend on the velocity gradient. 

• The system constituted by the governing equations consists of five equations in 

six unknowns (.ρ, p, ρu, ρv, ρw, e). The additional equation to consider is the 

state equation which, in the case of a perfect gas is 

. p = ρRT,

where. R is the constant of the considered gas. This relationship introduces a further 

unknown .T which corresponds to a further equation that closes the system and 

which is represented by a thermodynamic relationship between the state variables: 

. e = cvT

where .cv is the specific heat at constant volume for the considered gas. 

• In Sect. 2.5 the momentum conservation equations for non-stationary compress-

ible viscous flows are defined as the Navier–Stokes equations. Although this is 

historically correct, in modern literature, when talking about numerical solution 

of Navier–Stokes equations, it means the solution of the system formed by all the 

governing equations including the continuity equation and conservation of energy 

for an unsteady compressible viscous flow. 

2.8 Further Insights on the Conservative Form 

It is worth recalling that, by definition, the flux of a certain quantity is the measure 

of that quantity that crosses a unit of surface area in the unit of time. For example, 

the mass flux will be dimensionally equivalent to a mass per unit of time and surface 

area: 

. [mass f lux] =
kg

m2s
.

It is immediately clear that the mass flux does not coincide with the mass flow rate. 

Multiplying the mass flux by a surface area gives the mass flow rate, which can 

therefore be interpreted as the flux through a non-unitary surface. Proceeding with 

the dimensional analysis of the term .ρu, we obtain 

.ρu =
kg

m3

m

s
=

kg

m2s
= [mass f lux]
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that is, the momentum per unit volume can be interpreted as a mass flux. The dimen-

sional analysis of the term .ρu2 leads to 

. ρu2 = ρuu =
kg

m3

m

s

m

s
=

kg m
s

m2s
= [ f lux of momentum] .

As for the dimensional analysis of the pressure term . p, we obtain 

. p =
force

surface
=

mass · acceleration

surface

= kg
m

s2

1

m2
=

kg m
s

m2s
=

[

flux of momentum
]

.

This is an opportunity to highlight how a force can be interpreted as a flow rate of 

momentum: 

. 

[

force
]

=
[

pressure
]

·
[

surface
]

=
[

flux of momentum
]

·
[

surface
]

.

With these premises, it is observed once again that, in the conservative form of the 

governing equations, the divergence of the flux of a certain quantity always appears: 

• the mass conservation equation contains the divergence of the mass flux .ρV; 

• the momentum conservation equation along x contains the divergence of the flux 

.ρuV of the component along x of the momentum; 

• the conservation equation of momentum along y contains the divergence of the 

flux .ρvV of the component along x of the momentum; 

• the conservation equation of momentum along z contains the divergence of the 

flux .ρwV of the component along x of the momentum; 

• the energy conservation equation such flux contains the divergence of the flux 

.ρ
(

e + V 2

2

)

V of the energy. 

It is recalled here that only by considering a fixed control volume in space the 

conservative form of the governing equations can be obtained from the application of 

the concepts of conservation of mass, momentum (Newton’s second law), and energy 

(first law of thermodynamics). Therefore, in the case where a fixed control volume 

in space is considered, the governing equations will have as dependent variables 

the fluxes rather than the primitive variables such as pressure, density, velocity, 

etc. Based on this last consideration, the governing equations can be more clearly 

understood if written in conservative form (so-called because only the conserved 

variables appear, i.e., the fluxes rather than the primitive variables). The governing 

equations are typically written as 

.

∂U

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= J. (2.37)
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This equation is able to represent the entire system of Navier-Stokes equations setting 

. U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ

ρu

ρv

ρw

ρ

(

e +
V 2

2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu

ρu2 + p − τxx

ρvu − τxy

ρwu − τxz

ρ

(

e +
V 2

2

)

u + pu − k
∂T

∂x
− uτxx − vτxy − wτxz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρv

ρuv − τyx

ρu2 + p

ρuv

ρuw

ρ

(

e +
V 2

2

)

u + pu

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρv

ρuv

ρv2 + p

ρvw

ρ

(

e +
V 2

2

)

v + pv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρw

ρuw

ρvw

ρw2 + p

ρ

(

e +
V 2

2

)

w + pw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

.J =

⎡

⎢
⎢
⎢
⎢
⎣

0

ρ fx

ρ fy

ρ fz

ρ
(

u fx + v fy + w fz

)

+ ρq̇

⎤

⎥
⎥
⎥
⎥
⎦

.
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The terms . F, . G, . H in Eq. 2.37 are referred to as flux terms or flux vectors. The  term . J

is called source term (which is zero if the volume forces are negligible). The term. U is 

referred to as solution vector because its elements are the dependent variables whose 

values are the result of numerical iterative solution methods. Once the elements of 

. U—also called conserved variables—are known, the value of the primitive variables 

can be obtained using the following relationships: 

. ρ = ρ; u =
ρu

ρ
; v =

ρv

ρ
; w =

ρw

ρ
; e =

ρ
(

e + V 2/2
)

ρ
−

u2 + v2 + w2

2
.

In the case of inviscid flows, the terms in Eq. 2.37 become 

. U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρ

ρu

ρv

ρw

ρ

(

e +
V 2

2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρu

ρu2 + p

ρvu

ρwu

ρ

(

e +
V 2

2

)

u + pu

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρv

ρuv

ρv2 + p

ρwv

ρ

(

e +
V 2

2

)

v + pv

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

. H =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ρw

ρuw

ρvw

ρw2 + p

ρ

(

e +
V 2

2

)

w + pw

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; J =

⎡

⎢
⎢
⎢
⎢
⎣

0

ρ fx

ρ fy

ρ fz

ρ
(

u fx + v fy + w fz

)

+ ρq̇

⎤

⎥
⎥
⎥
⎥
⎦

.

The conservative form of the Navier-Stokes equations shown with the Eq. 2.37 

is referred to as strong because all the flux variables always appear solely as an 

argument of the derivative sign. Conversely, the other conservative forms discussed 

are called weak because the flux variables also appear outside the derivative sign. 

The representation in strong conservative form is particularly important in the case 

of compressible flows which are characterised by the presence of discontinuities in 

primitive variables such as shocks. In the case where such discontinuities manifest 

in the computational domain without specific detection techniques being incorpo-

rated into the general calculation algorithm, we speak of shock-capturing meth-

ods. An alternative approach involves the explicit introduction in the computational 

domain of discontinuities and the use of Rankine-Hugoniot relations to calculate the 

value of the primitive quantities upstream and downstream of the shock; the Navier-
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Fig. 2.17 Computational 

domain for the case of 

shock-capturing methods 

Fig. 2.18 Computational 

domain for the case of 

shock-fitting methods 

Stokes equations are then used to determine the solution of the flow in the remaining 

parts of the computational domain. We speak in this case of shock-fitting methods. 

Figures 2.17 and 2.18 illustrate the computational domains corresponding to the two 

approaches. 

The use of the conservative form proves to be of fundamental importance in shock-

capturing methods. Considering a non-viscous flow in which a shock is present and 

referring to Fig. 2.19, it can be observed that, across the shock, the primitive variables, 

such as density or pressure, exhibit a discontinuity. If one were to consider, using the 

non-conservative form, the primitive variables as dependent variables, the presence 

of discontinuity would lead to “unstable” calculations (the iterative algorithm would 

diverge) as well as to incorrect results. On the contrary, the conserved variables such as 

the fluxes.ρu or.(p + ρu2) remain unchanged across the shock: the conservative form 

of the Navier-Stokes equations does not recognise discontinuity of the dependent 

variables thereby significantly improving the stability of the iterative process and the 

accuracy of the results. 

2.9 General Transport Equation 

Referring to Sect. 2.7, it is noted that, for fluids consisting of a single substance, the 

governing equations in conservative form can be written as the following balance
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Fig. 2.19 Variation of 

properties across a shock 

equation known as general transport equation in differential form. Introducing the 

symbol . φ to represent the generic quantity being transported, the general transport 

equation in differential form is 

.

∂ρφ

∂t
︸︷︷︸

Temporal variation

+

Convection
︷ ︸︸ ︷

∇ · (ρuφ) =

Diffusion
︷ ︸︸ ︷

∇ · (ρŴφ∇φ) +

Source
︷ ︸︸ ︷

Sφ(φ) (2.38) 

where . ρ is the density, . u is the velocity of the fluid that carries the quantity . φ with its 

three components.u, v, w,.Ŵφ is the diffusion coefficient (viscosity. µ or thermal diffu-

sivity . α) of . φ, . Sφ, with its three components .Su, Sv, Sw, is the generation/destruction 

of . φ within the fluid element. Equation 2.38 represents the fact that the sum of the 

time variation of . φ within the fluid element and the net outgoing/incoming flux due 

to conduction from/into the element of fluid, is equal to the variation of . φ within the 

fluid element due to the net outgoing/incoming flux due to diffusion from/into the 

element of fluid plus the variation, caused by the presence of sources or sinks, of . φ. 

By setting .φ = 1, .Ŵφ = 0, .Sφ = 0 it is possible to derive the continuity equation:
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. 

∂ρ

∂t
+ ∇ · (ρu) = 0.

By setting .φ = u, .Ŵφ = µ, .Sφ = Su −
∂ p

∂x
it is possible to derive the first component 

of the momentum conservation equation: 

.

∂ρu

∂t
+ ∇ · (ρuu) = ∇ · (µ∇u) −

∂ p

∂x
+ Su . (2.39) 

By setting .φ = v, .Ŵφ = µ, .Sφ = Sv −
∂ p

∂y
it is possible to derive the second compo-

nent of the momentum conservation equation: 

.

∂ρv

∂t
+ ∇ · (ρuv) = ∇ · (µ∇v) −

∂ p

∂y
+ Sv. (2.40) 

By setting.φ = w,.Ŵφ = µ,.Sφ = Sw −
∂ p

∂z
it is possible to derive the third component 

of the momentum conservation equation: 

.

∂ρw

∂t
+ ∇ · (ρuw) = ∇ · (µ∇w) −

∂ p

∂z
+ Sw. (2.41) 

In Eqs. 2.39, 2.40, 2.41 the symbol . µ denotes the dynamic viscosity which is related 

to the kinematic viscosity . ν by the relation .ν = µ/ρ. The expression of the three 

components of momentum conservation equation can be compacted using the vector 

notation: 

.

∂ρu

∂t
+ ∇ · (ρuu) = ∇ · (µ∇u) − ∇ p + S. (2.42) 

In the case where the density can be considered constant and the term . S is absent, 

Eq. 2.42 becomes: 

.

∂u

∂t
+ ∇ · (uu) = ∇ · (ν∇u) − ∇

(
p

ρ

)

. (2.43) 

The term . 
p

ρ
is referred to as kinematic pressure. Setting .φ = h, .Ŵφ = k

C p
, .Sφ = Sh it 

is possible to derive the energy conservation equation: 

. 

∂ρh

∂t
+ ∇ · (ρuh) = ∇ ·

(
k

C p

∇T

)

+ Sh,

having indicated with . h the specific enthalpy, with . k the thermal conductivity, with 

.C p the specific heat at constant pressure, with . T the absolute temperature. The term 

.Sh contains in itself contributions such as viscous dissipation, the time and spatial 

variation of pressure, all terms derived from the application of the conservation of 

total energy to the control volume considered and not explicitly reported here. To bet-
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Fig. 2.20 Effect of 

advection 

Fig. 2.21 Effect of diffusion 

ter understand the phenomena described by the various terms of Eq. 2.38, Figs.  2.20 

and 2.21 illustrate the effects of advection (the term .∇ · (ρuφ)) and diffusion (the 

term .∇ · (ρŴφ∇φ)) on a quantity . φ whose initial distribution is represented by the 

dashed line: 

• in the case of advection the profile is not modified in shape but only in position by 

a quantity equal to the distance travelled in time . t due to the effect of the velocity 

field . u; 

• in the case of diffusion the profile does not undergo any displacements but only 

deformations related to the decrease in gradients. 

See Sect. 1.3.3 for the definitions of advection and convection.
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The Finite Volume Method 

Given a computational domain with known initial and boundary conditions, the 

objective is to solve the general transport equation for a quantity. φ, which is presented 

here for simplicity. 

.

∂ρφ

∂t
︸︷︷︸

T emporal variation

+

Convection
︷ ︸︸ ︷

∇ · (ρuφ) =

Di f f usion
︷ ︸︸ ︷

∇ · (ρŴφ∇φ)+

Source
︷ ︸︸ ︷

Sφ(φ) . (3.1) 

This is a second-order partial differential equation. To achieve an acceptable degree 

of accuracy in its numerical resolution, the employed discretisation scheme must 

have a degree of accuracy equal to or higher than that of the equation. To satisfy this 

constraint, it is necessary to assume a linear variation of the quantity . φ in space and 

time in the vicinity of the generic point. P and time. t under consideration, respectively. 

By considering a Taylor series expansion (see Sect. 1.5.1) in the vicinity of point . P , 

accurate to the second order, we obtain 

. φ(x) = φP + (x − xP) · (∇φ)P wi th φP = φ(xP)

. φ(t + δt) = φt + δt

(
∂φ

∂t

)t

wi th φt = φ(t).

In the finite volume method, the computational domain is divided (discretised) into  

an arbitrary and finite number of control volumes or cells. These control volumes 

can have any shape, with the only constraint that the surfaces (faces) delimiting 

them must be flat. Information such as the position of the centroid of each control 

volume, the position of the centroid of each face of the surface delimiting the control 

volume, the volume of each cell, the area of each face, and the cells to which each 

face belongs will also be known. Therefore, all the necessary geometric information 

will be available. All variables will be calculated and stored at the centroids (centres) 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 

G. Caramia and E. Distaso, A Practical Approach to Computational Fluid Dynamics 

Using OpenFOAM®, https://doi.org/10.1007/978-3-031-88957-8_3 

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-88957-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3
https://doi.org/10.1007/978-3-031-88957-8_3


80 3 The Finite Volume Method

of the cells, within which the values of the calculated variables will be considered 

constant. 

The finite volume method 1 applies the conservation principles discussed in 

Sects. 2.4, 2.5, and 2.6 to each of the cells into which the computational domain 

has been discretised. Denoting by .VP the volume of the generic cell centred at . P , it  

is possible to integrate Eq. 3.1 with respect to .VP to obtain 

. 

∫

VP

∂ρφ

∂t
dV +

∫

VP

∇ · (ρuφ) dV =

∫

VP

∇ · (ρŴφ∇φ) dV +

∫

VP

Sφ(φ) dV .

Then, using the divergence theorem (see Sect. 1.1.6), it is possible to transform the 

volume integrals into surface integrals (see also Sect. 2.8). 

. 

∂

∂t

∫

VP

(ρφ) dV +

∮

∂VP

dS · (ρuφ) −

∮

∂VP

dS · (ρŴφ∇φ) =

∫

VP

Sφ(φ) dV .

From this, a second-order approximate expression can be derived using the midpoint 

integration rule (see Sect. 1.5.2). Regarding the convective term, we have 

. 

∫

VP

∇ · (ρuφ) dV =

∮

∂VP

dS · (ρuφ)
︸ ︷︷ ︸

convective f lux

=
∑

f

∫

f

dS · (ρuφ) f ≈
∑

f

S f · (ρuφ) f

=
∑

f

S f · (ρuφ) f (3.2) 

where .(ρuφ) f represents the value of the quantity .ρuφ at the centre of face . f . For  

the diffusive term, on the other hand, 

. 

∫

VP

∇ · (ρŴφ∇φ) dV =

∮

∂VP

dS · (ρŴφ∇φ)
︸ ︷︷ ︸

di f f usive f lux

=
∑

f

∫

f

dS · (ρŴφ∇φ) f ≈
∑

f

S f · (ρŴφ∇φ) f

=
∑

f

S f · (ρŴφ∇φ) f (3.3)

1 Akshai Runchal, Transfer Processes in Steady Two-Dimensional Separated Flows, Ph.D. thesis, 

Faculty of Engineering, University of London, 1969. 
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where .(ρŴφ∇φ) f represents the value of the quantity .ρŴφ∇φ at the centre of face . f . 

For the source term, one can distinguish between the constant contribution .Sc and 

the linear contribution .Sp. 

.

∫

VP

Sφ(φ) dV = Sφ�V = ScVP + SpVPφP . (3.4) 

Observing Eqs. 3.2 and 3.3, it is clear that it is necessary to determine the convective 

and diffusive fluxes at the centroids of the cell faces as functions of the values assumed 

at the centroids of the cells to which the faces belong. Below, specific interpolation 

methods used for this purpose are illustrated. 

3.1 Convective-Diffusive Fluxes 

The equation describing the transport of a quantity . φ in a steady flow, accounting for 

both diffusive and convective phenomena, can be derived from the general transport 

Eq. 3.1 by neglecting the time derivative term: 

.∇ · (ρuφ) = ∇ · (Ŵφ∇φ) + Sφ (3.5) 

which, in the one-dimensional case with flow velocity . u, takes the form 

.

d

dx
(ρuφ) =

d

dx

(

Ŵφ

dφ

dx

)

+ Sφu
. (3.6) 

The component in the .x-axis direction, .Sφu
, of the source term is a function of 

the variable . φ. Specifically, a linear approximation can be considered, as shown in 

Eq. 3.4. In the absence of sources, the source term .Sφu
is zero. In addition to the 

transport equation, the conservation of mass equation must also be satisfied: 

.

d (ρu)

dx
= 0. (3.7) 

Referring to Fig. 3.1 and integrating equation 3.6 over the cell centred at. P , we obtain 

. (ρuφA)e − (ρuφA)w =

(

Ŵφ

dφ

dx
A

)

e

−

(

Ŵφ

dφ

dx
A

)

w

+ (Su + SPφP) (3.8) 

where the subscripts . e and .w indicate the values of the quantity at the right and left 

borders, respectively, of the cell centred at . P . Although there are no sources of the 

quantity . φ in the analysed problem, the terms related to the linearised source term
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Fig. 3.1 Cell P centre 

.(Su + SPφP) are included in Eq. 3.8 to allow, as shown in the numerical example 

below, the correct assignment of boundary conditions. Integrating equation 3.7, we  

obtain 

. (ρu A)e − (ρu A)w = 0. (3.9) 

We can define the flux (flow rate per unit surface area, see Sect. 2.8) of convective 

mass as 

. F = ρu

and the diffusive mass flux (diffusive conductance) as 

. D =
Ŵ

δx

in which the subscript . φ for the quantity . Ŵ has been omitted to simplify the notation. 

Therefore, at the left border of the cell centred at . P , it will  be  

. Fw = (ρu)w Dw =
Ŵw

δxW P

.

whereas at the right border, it will be 

. Fe = (ρu)e De =
Ŵe

δxP E

.

Equations 3.8 and 3.9 can be discretised by assuming, for simplicity, that . A = Aw =

Ae and using the centred difference approach to determine the contribution of the 

diffusive terms. Note that the elimination of the term related to the area of the faces 

from Eq. 3.8 was possible only because there are no source terms, terms derived from 

the discretisation of time derivatives, or terms arising from a discretisation that does 

not involve the calculation of surface integrals. Therefore, the discretised form of 

Eq. 3.8 becomes 

.Feφe − Fwφw = De (φE − φP) − Dw (φP − φW ) + (Su + SPφP) (3.10)
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and the following for Eq. 3.9 

.Fe − Fw = 0. (3.11) 

The advection velocity values . u at the cell boundaries are generally calculated using 

simple linear interpolation between the values at the two adjacent cell centres. It is 

now clear that, to solve Eq. 3.10, it is necessary to compute the values of the trans-

ported quantity, .φw and . φe, at the cell boundaries. Various methods for determining 

these values will be illustrated below. 

3.1.1 Linear Interpolation or Central Differencing 

Initially, only the value .φe is considered, which can be calculated by performing a 

simple linear interpolation starting from the values at the two cell centres, P and E 

(see Fig. 3.2). 

In practice, it will be 

. φe = fxφP + (1 − fx )φE wi th fx =
eE

P E
=

| xe − xE |

| d |
.

Considering, for simplicity, a grid with uniform spacing, it will be 

. φe =
φP + φE

2
, φw =

φW + φP

2
.

Substituting these values into Eq. 3.10 leads to writing 

. 
Fe

2
(φP + φE ) −

Fw

2
(φW + φP ) = De (φE − φP ) − Dw (φP − φW ) + (Su + SPφP )

Fig. 3.2 Linear interpolation 

or central difference
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that is, 

. 

[(

Dw +
Fw

2

)

+

(

De −
Fe

2

)

+ (Fe − Fw) − SP

]

φP

=

(

Dw +
Fw

2

)

φW +

(

De −
Fe

2

)

φE + Su . (3.12) 

Setting 

. aP =

[(

Dw +
Fw

2

)

+

(

De −
Fe

2

)

+ (Fe − Fw) − SP

]

,

aW =

(

Dw +
Fw

2

)

,

aE =

(

De −
Fe

2

)

,

it will be possible to express Eq. 3.12 in a more compact form as 

.aPφP = aW φW + aEφE + Su . (3.13) 

When written for each cell of the considered one-dimensional domain, Eq. 3.13 

results in a system of algebraic equations, the solution of which represents the dis-

tribution of the transported quantity . φ in terms of the value at the centre of each 

discretisation cell. 

3.1.1.1 Numerical Example 

Consider the one-dimensional domain shown in Fig. 3.3, within which a scalar quan-

tity . φ is transported with velocity . u in the presence of both convective and diffusive 

phenomena. 

The governing equation is Eq. 3.6, and the boundary conditions to be set are 

.φ0 = 0 for .x = 0 and .φL = 1 for .x = L . The task is to compute the distribution 

of . φ as a function of the coordinate . x using the central differencing scheme in the 

following cases: 

1. discretisation of the computational domain with 5 nodes and .u = 0.1m/s; 

2. discretisation of the computational domain with 5 nodes and .u = 2.5m/s; 

3. discretisation of the computational domain with 20 nodes and .u = 2.5m/s; 

Fig. 3.3 Computational 

domain and boundary 

conditions
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Fig. 3.4 Discretised 

computational domain 

4. compare the results obtained in each of the previous cases with the analytical 

solution given by 

.

φ − φ0

φL − φ0

=
exp(ρux/Ŵ) − 1

exp(ρuL/Ŵ) − 1
. (3.14) 

Further data necessary for the solution are:.ρ = 1 kg/m3,.L = 1m,.Ŵ = 0.1 kg/(ms). 

It should be noted that, although it is constant, the density term is still maintained in 

the equations considered below to avoid complicating aspects related to dimensional 

analysis. Considering the provided data and observing Fig. 3.4, it can be stated that 

all cells will have the same values for the following quantities: .Fe = Fw = F = ρu, 

.De = Dw = D = Ŵ/δx . 

Figure 3.4 represents the case of a computational domain discretised into five cells. 

Equation 3.13 can be applied to the internal cells 2, 3, and 4, while the boundary cells 

1 and 5 require a slightly different approach. Considering cell 1, it is noted that the 

face . w corresponds to the boundary on which the value of the quantity . φ is specified; 

therefore, no calculation is necessary to determine its value. The same applies to the 

face . e of cell 5. Therefore, for cell 1, it can be written 

.

Fe

2
(φP + φE ) − FAφA = De (φE + φP) − DA (φP − φA) (3.15) 

and for cell 5 

.FBφB −
Fw

2
(φP + φW ) = DB (φB + φP) − Dw (φP − φW ) . (3.16) 

Considering that .DA = DB = 2Ŵ/δx = 2D and that .FA = FB = F Eqs. 3.15 and 

3.16 can be written in a compact form as 

.aPφP = aW φW + aEφE + Su (3.17) 

with 

.aP = aW + aE + (FE − FW ) − SP . (3.18) 

Notice that the expression for .aP differs depending on whether the cell is on the 

boundary or not. 

Table 3.1 summarises the expression of the coefficients for the cells. 

Table 3.2 shows the numerical values of the coefficients for the cells in case 1 

(symbol .C1) for  which is .u = 0.1m/s, .F = ρu = 0.1, .D = Ŵ/δx = 0.1/0.2 = 0.5.
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Table 3.1 Expression of the coefficients for the cells 

Node .aW .aE .SP . Su

1 0 .D − F/2 .−(2D + F) . (2D + F)φA

2, 3, 4 .D + F/2 .D − F/2 0 0 

5 .D + F/2 0 .−(2D − F) . (2D − F)φB

Table 3.2 Value of the coefficients for the cells 

Node .aW .aE .Su .SP . ap

.C1 C2 .C1 C2 .C1 C2 .C1 C2 . C1 C2

1 .0 .0.45 . −0.75 .1.1φA . 3.5φA .−1.1 . −3.5 .1.55 . 2.75

2 .1.75 . −0.75 .0.45 . −0.75 .0 .0 . 1

3 .1.75 . −0.75 .0.45 . −0.75 .0 .0 . 1

4 .1.75 . −0.75 .0.45 . −0.75 .0 .0 . 1

5 .1.75 .0 .0 . 0.9φB . −1.5φB .−0.9 . 1.5 .1.45 . 0.25

Therefore, applying Eq. 3.17 to each of the five cells, starting from cell . 1 up to 

cell . 5, the following system of algebraic equations can be written: 

. 

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

1.55φ1 − 0.45φ2 + 0φ3 + 0φ4 + 0φ5 = 1.1

−0.55φ1 + 1φ2 − 0.45φ3 + 0φ4 + 0φ5 = 0

0φ1 − 0.55φ2 + 1φ3 − 0.45φ4 + 0φ5 = 0

0φ1 + 0φ2 − 0.550φ3 + 1φ4 − 0.45φ5 = 0

0φ1 + 0φ2 + 0φ3 − 0.55φ4 + 1.45φ5 = 0

which, in matrix equation form, .Aφ = b becomes 

. 

⎡

⎢
⎢
⎢
⎢
⎣

1.55 −0.45 0 0 0

−0.55 1 −0.45 0 0

0 −0.55 1 −0.45 0

0 0 −0.55 1 −0.45

0 0 0 −0.55 1.45

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

φ1

φ2

φ3

φ4

φ5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

1.1

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎦

whose solution is 

.

⎡

⎢
⎢
⎢
⎢
⎣

φ1

φ2

φ3

φ4

φ5

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

0.9421

0.8006

0.6276

0.4163

0.1579

⎤

⎥
⎥
⎥
⎥
⎦

.
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Table 3.3 Comparison between numerical and analytical solution 

Node Distance Numerical solution Analytical solution Percentage error 

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 

1 .0.1 .0.9421 .1.0356 .0.9387 .1.0000 .−0.36 . −3.56

2 .0.3 .0.8006 .0.8694 .0.7963 .0.9999 .−0.53 . 13.05

3 .0.5 .0.6276 .1.2573 .0.6224 .0.9999 .−0.83 . −25.74

4 .0.7 .0.4163 .0.3521 .0.4100 .0.9994 .−1.53 . 64.70

5 .0.9 .0.1579 .2.4644 .0.1505 .0.9179 .−4.91 . −168.48

Notice that each row of the coefficient matrix refers to the conservation equation 

written for the corresponding cell centre, and that, in correspondence with the ele-

ments of the main diagonal, there are always the values related to the cell centre, 

while the off-diagonal elements are the values related to cells adjacent to the one 

considered. Given the data of the problem and considering Eq. 3.14, the analytical 

solution is given by 

. φ(x) =
2.7183 − exp(x)

1.7183
.

Table 3.3 and Fig. 3.5 summarise the comparison between the analytical and 

numerical solutions obtained by applying the finite volume method to case 1. 

Table 3.2 shows the numerical values of the coefficients for the cells for case 2 

(symbol .C2) for which  .u = 2.5m/s, .F = ρu = 2.5, .D = Ŵ/δx = 0.1/0.2 = 0.5. 

Considering the data of the problem and the Eq. 3.14, the analytical solution is given 

by 

. φ(x) = 1 +
1 − exp(25x)

7.20 · 1010
.

Table 3.3 and Fig. 3.6 summarise the comparison between the analytical solution and 

the numerical solution obtained by applying the finite volume method to case 2. The 

Fig. 3.5 Graphical 

comparison between 

numerical and analytical 

solution for case 1
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Fig. 3.6 Graphical comparison between numerical and analytical solution related to case 2 

Table 3.4 Value of the coefficients for the cells in case 3 

Node .aW .aE .Su .SP . ap

1 .0 .0.75 .6.5φA .−6.5 . 7.25

2–19 .3.25 .0.75 .0 .0 . 4

20 .3.25 .0 .1.5φB .−1.5 . 4.75

discrepancy between the two solutions is clear in this case. The oscillations present 

in the numerical solution are known in the literature as “wiggles”. 

Referring to case 3, for which it is .u = 2.5m/s, .F = ρu = 2.5, .δx = 0.05, . D =

Ŵ/δx = 0.1/0.05 = 2, Table 3.4 summarises the values of the coefficients for the 

cells. It can be seen that, by increasing the number of intervals, the numerical solution 

no longer presents significant errors. This is due to the decrease in the value of the 

.F/D ratio, which with twenty intervals is .1.25, while with five intervals it is . 5. 

3.1.2 Properties of Discretisation Schemes 

As previously shown, the onset of oscillatory phenomena in the numerical solution 

can be avoided by increasing the number of cells. However, in most common use 

cases, the level of refinement required is not acceptable in terms of computational 

resources and the time required for calculation. It is therefore necessary to anal-

yse some properties that can provide indications about the behaviour of numerical 

schemes when dealing with computational grids that have a reduced number of cells. 

Among these properties, the most important are: 

• conservativeness; 

• boundedness; 

• transportiveness.



3.1 Convective-Diffusive Fluxes 89

3.1.2.1 Conservativeness 

Considering that each face internal to the computational domain is shared by only two 

cells, the corresponding flux can be calculated by considering the face as belonging 

alternately to each of the two cells. The numerical scheme is said to have the property 

of conservativeness if it provides the same flux value—except for the sign—both 

when the face is considered to belong to one cell and when the same face is considered 

to belong to the other cell. 

To better understand this concept, an example of a scheme that possesses this prop-

erty is now illustrated. Consider the case of a stationary one-dimensional problem 

of pure diffusion in the absence of source terms, as illustrated in Fig. 3.7. Consid-

ering cell 2 and applying linear interpolation, the flux crossing the left face will be 

.Ŵw2
(φ2 − φ1)/δx , while the flux crossing the right face will be .Ŵe2(φ3 − φ2)/δx . 

Considering the remaining cells, it is: 

. 

[

Ŵe1

(φ2 − φ1)

δx
− qA

]

+

[

Ŵe2

(φ3 − φ2)

δx
− Ŵw2

(φ2 − φ1)

δx

]

+

[

Ŵe3

(φ4 − φ3)

δx
− Ŵw3

(φ3 − φ2)

δx

]

+

[

qB − Ŵw4

(φ4 − φ3)

δx

]

= qB − qA. (3.19) 

Given that .Ŵe1 = Ŵw2
, .Ŵe2 = Ŵw3

, and .Ŵe3 = Ŵw4
, the fluxes at the interfaces cancel 

out (it is said in this case that they are expressed in a consistent manner), and there-

fore Eq. 3.19 is satisfied. The consistency of the flux expression resulting from the 

application of linear interpolation determines the conservation of . φ throughout the 

computational domain (i.e., the flux that crosses all the internal faces has, except for 

the sign, always the same value regardless of whether one or the other of the two 

cells to which the face belongs). 

Inconsistent interpolation laws give rise to schemes that do not conserve the 

transported quantity . φ. This is the case illustrated in Fig. 3.8, where a quadratic 

interpolation curve is used for the calculation of the fluxes at the interface: it can 

be noted that the value of . φ on the face that separates cell 2 from cell 3 is different 

depending on the values used to determine the quadratic curve. The quadratic curve 

using values .φ1,φ2,φ3 differs from that using the values .φ2,φ3,φ4. In other words, 

the flux exiting from cell 2 through the face is not equal—it does not conserve—in 

modulus to the one entering cell 3 through the same face. 

Fig. 3.7 Application of the 

central differencing scheme 

for the calculation of flows at 

the interface
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Fig. 3.8 Application of the 

scheme with quadratic 

interpolation curve for the 

calculation of the fluxes at 

the interface 

The term consistency used here expresses a concept different from that of consis-

tency of a numerical method, according to which, as the level of refinement increases, 

the truncation error must decrease, i.e., the difference between the solution of the 

analytical equation and the solution of the discretised equation decreases. 

3.1.2.2 Boundedness 

Considering Sect. 4.3, the confinement criterion is recalled here, according to which, 

in the absence of sources, the value of the quantity . φ in the generic cell must lie 

between those of the two cells adjacent to it. In the case of the numerical exam-

ple illustrated in Sect. 3.1.1, according to this criterion, the temperature within the 

computational domain must be between the values set at the ends of the domain 

as boundary conditions. If the considered scheme does not satisfy this criterion, it 

may cause the iterative solution process to fail to converge or present unrealistic 

oscillations—wiggles—as illustrated in Fig. 3.6. 

3.1.2.3 Transportiveness 

It is necessary here to define the Péclet number as 

. Pe =
F

D
=

ρu

Ŵ/δx
.

This dimensionless number expresses a measure of the relative strength of convection 

and diffusion. 

Figure 3.9 shows the transport of the quantity . φ in the absence of convection: in 

this case, the fluid is at rest, .Pe = 0, and the iso-level curves of . φ are concentric 

circles with the centre located at the cell centres W and E. The value of . φ at the cell 

Fig. 3.9 Purely diffusive 

transport
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Fig. 3.10 Convective-

diffusive transport 

Fig. 3.11 Purely convective 

transport 

centre P depends both on the contributions from W and E, since the diffusive process 

proceeds in all directions indiscriminately. 

Figure 3.10 shows the transport of the quantity . φ in the case of the simultaneous 

presence of convection and diffusion: in this case, the fluid moves with velocity . u, 

.Pe �= 0, and the iso-level curves of . φ are translated ellipses in the direction of the 

fluid velocity. The value of . φ at the cell centre P depends to a greater extent on the 

contribution from W. 

Figure 3.11 shows the transport of the quantity. φ in the absence of diffusion: in this 

case the fluid moves with velocity . u, .Pe → ∞ and the iso-level curves of . φ collapse 

into a half-line originated in W. The value of . φ in the centre of cell P depends only 

on the contribution of W, while the centre of cell E does not influence the value in the 

centre of cell P at all. In conclusion, transportiveness describes the mutual influence 

of the nodes, depending on the Péclet number and the direction of the advection 

velocity. 

3.1.3 Assessment of the Central Scheme 

for Convection-Diffusion Cases 

With reference to the concepts just illustrated, the behaviour of the scheme with 

linear interpolation is now analysed. 

Conservativeness: Sect. 3.1.2.1 showed that this scheme presents a consistent 

expression for the fluxes. 

Boundedness: As demonstrated in Sect. 3.1.1, for the cell centre P, Eq. 3.17 applies 

with the expression of .aP shown in Eq. 3.18. Considering that a stationary one-

dimensional flow must satisfy the continuity equation, it follows that.Fe − Fw = 0, as  

shown in Eq. 3.11. Consequently, we can write that .aP = aW + aE . This expression 

implies that the coefficients of the central scheme satisfy the Scarborough criterion 

(see Sect. 4.3). 

Particular attention should be given to the coefficient .aE = De − Fe

2
, because in 

the case of strongly convective flows, the value of .Fe could make the coefficient . aE

negative. The limit condition is therefore expressed as: 

.

Fe

De

= Pee < 2. (3.20)



92 3 The Finite Volume Method

Unlike cases 1 and 3, in case 2 of the numerical example seen before, this condition is 

violated, resulting in the presence of non-physical oscillations, as shown in Fig. 3.6. 

It is interesting to note that the Péclet number is a combination of flow properties 

(i.e., the velocity . u), fluid properties (i.e., the density . ρ and the diffusion coefficient 

. Ŵ), and properties of the computational grid (i.e., the spacing .δx). Therefore, given 

the values of . ρ and . Ŵ for a specific fluid, the condition (3.20) can be satisfied either 

for low velocity values (i.e., flows with a low Reynolds number, where diffusion is 

dominant) or for small grid spacings (i.e., very fine grids). 

Transportiveness: In this scheme, the computation of convective and diffusive fluxes 

does not take into account the direction of flow or the relative strength of con-

vection versus diffusion. As a result, the scheme does not possess the property of 

transportiveness when applied to flows with a high Péclet number. 

3.1.4 Upwind Scheme or Upwind Differencing (UD) 

In this approach, the direction of the flow is considered in order to determine the 

value of .φ f . Specifically, .φ f is defined as the value of . φ at the cell centre from which 

point . f perceives the arriving flow (see Figs. 3.12 and 3.13). Using a nautical term, 

this is referred to as the upwind value of . φ. The considered value is upwind relative 

to point . f , which represents the intersection of the line connecting the centres of 

the two cells to which the face belongs, and the face itself, whose normal vector is 

denoted by .n f . In formulas,  

. 

{

φ f = φP for (u · n) f ≥ 0,

φ f = φN for (u · n) f < 0.

Fig. 3.12 Value of .φ f in the 

case .(u · n) f ≥ 0
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Fig. 3.13 Value of .φ f in the 

case . (u · n) f < 0

This scheme is accurate to the first order. Using the notation in Fig. 3.4, if the  

direction of the flow is positive, then .uw > 0, .ue > 0, and consequently .φw = φW , 

.φe = φP . The discretised equation for point .P can then be written as 

. FeφP − FwφW = De (φE − φP) − Dw (φP − φW )

This can be rearranged as follows to highlight the coefficients of .φP , .φW , . φE

. [(Dw + Fw) + De + (Fe − Fw)]φP = (Dw + Fw) φW + DeφE . (3.21) 

When the flow direction is negative,.uw < 0,.ue < 0 and therefore.φw = φP ,. φe = φE

and the discretised equation for point P is 

. [Dw + (De − Fe) + (Fe − Fw)]φP = DwφW + (De − Fe) φE . (3.22) 

Equations 3.21 and 3.22 can be rewritten in the form 

. aPφP = aW φW + aEφE

with 

. aP = aW + aE + (Fe − Fw) , aW = DW + max(Fw, 0), aE = DE + max(0,−Fe).

To better understand the properties of this numerical scheme, it will be applied to 

the numerical example presented in Sect. 3.1.1. Once again, all cells will have the 

same values for the following quantities: .Fe = Fw = F = ρu, . De = Dw = D =

D = Ŵ/δx . 

Applying the upwind scheme to cell 1, it can be written as 

.FeφP + FAφA = De (φE − φP) − DA (φP − φA) (3.23) 

and for cell 5 

.FBφP − FwφW = DB (φB − φP) − Dw (φP − φW ) . (3.24)



94 3 The Finite Volume Method

Considering that .DA = DB = 2Ŵ/δx = 2D and that .FA = FB = F , Eqs.  3.23 and 

3.24 can be written in compact form as 

.aPφP = aW φW + aEφE + Su (3.25) 

with 

.aP = aW + aE + (FE − FW ) − SP (3.26) 

This includes the contribution of the boundary conditions as a source term. 

Table 3.5 summarises the values of the coefficients for the cells. 

Considering the problem data and Eq. 3.14, the analytical solution for case 1 is 

given by 

. φ(x) =
2.7183 − exp(x)

1.7183
.

Table 3.6 and Fig. 3.14 summarise the comparison between the analytical and 

numerical solutions. 

Regarding case 2, where .u = 2.5m/s, .F = ρu = 2.5, and . D = Ŵ/δx =

0.1/0.2 = 0.5, the analytical solution is given by 

. φ(x) = 1 +
1 − exp(25x)

7.20 · 1010
.

Table 3.7 and Fig. 3.15 summarise the comparison between the analytical solution 

and the numerical solution obtained by applying the upwind scheme. It is evident 

Table 3.5 Expression of the coefficients for the cells in the case of the upwind scheme 

Node .aW .aE .SP . Su

1 0 .D .−(2D + F) . (2D + F)φA

2, 3, 4 .D + F .D 0 0 

5 .D + F 0 .−2D . 2DφB

Table 3.6 Comparison between numerical solution and analytical solution for case 1 solved using 

the upwind scheme 

Node Distance Numerical 

solution 

Analytical 

solution 

Percentage error 

1 .0.1 .0.9337 .0.9387 . 0.53

2 .0.3 .0.7879 .0.7963 . 1.05

3 .0.5 .0.6130 .0.6224 . 1.51

4 .0.7 .0.4031 .0.4100 . 1.68

5 .0.9 .0.1512 .0.1505 .−0.02
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Fig. 3.14 Comparison between numerical solution and analytical solution for case 1 solved using 

the upwind scheme 

Table 3.7 Comparison between numerical solution and analytical solution for case 2 solved using 

the upwind scheme 

Node Distance Numerical 

solution 

Analytical 

solution 

Percentage error 

1 .0.1 .0.9998 .1 . −3.56

2 .0.3 .0.9987 .0.9999 . 13.05

3 .0.5 .0.9921 .0.9999 . −25.74

4 .0.7 .0.9524 .0.9994 . 64.70

5 .0.9 .0.7143 .0.9179 . −168.48

Fig. 3.15 Comparison 

between numerical solution 

and analytical solution for 

case 2 solved using the 

upwind scheme
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that there is an improvement compared to the centred scheme, although a discrep-

ancy remains between the analytical and numerical solutions at the nodes near the 

boundary . B of the computational domain. 

In relation to the properties describing the behaviour of a numerical scheme, it can 

be stated that the upwind scheme possesses the property of conservativeness because 

the expression for the flux at the interface is consistent. The upwind scheme also has 

the property of boundedness, as the coefficients of the discretised equation are always
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Fig. 3.16 Computational 

domain, initial and boundary 

conditions used to show the 

phenomenon of numerical 

diffusion 

positive and the coefficient matrix is always diagonally dominant. Furthermore, the 

upwind scheme exhibits the property of transportiveness because it accounts for the 

direction of the flow. One of the most well-known problems associated with this 

scheme is false diffusion, also referred to as numerical diffusion. When the flow is 

not aligned with the grid, numerical diffusion causes the transported quantity . φ to 

be redistributed over more than one cell (smearing), in a manner similar to the effect 

of physical diffusivity (see Fig. 2.21). This effect can be illustrated by analysing the 

transport of a scalar . φ in a fluid that does not have a diffusion coefficient (.Ŵ = 0) and 

in the absence of sources, applying the upwind scheme on a computational domain 

whose grid is inclined at a certain angle with respect to the direction of the fluid 

motion in which . φ is transported. Figure 3.16 illustrates the computational domain, 

boundary conditions, and initial conditions used to demonstrate the phenomenon of 

numerical diffusion. 

In Fig. 3.16, a dashed segment is shown, over which the values of the transported 

quantity are displayed at different levels of grid refinement in Fig. 3.17. The analytical 

solution for the case in Fig. 3.16 represents a flow with a direction parallel to the 

continuous line diagonal. Moving along the dashed diagonal from left to right, the 

value of the transported quantity remains constant (100) until it intersects with the 

continuous diagonal, where a step change occurs. After the intersection, the value of 

the transported quantity becomes constant and equal to 0 until the boundary of the 

domain. Figure 3.17 illustrates the variation in the value of the transported quantity, 

corresponding to the analytical solution. In the same figure, it can be observed that 

the smearing phenomenon is reduced as the level of grid refinement increases. In 

many practical cases, the level of refinement required may be unacceptable due to 

the computational load involved. Furthermore, it has been shown that even with high 

levels of grid refinement, numerical diffusion can still lead to unacceptable results 

for flows with a high Reynolds number.
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Fig. 3.17 Variation of the value of the transported quantity along the dashed segment shown in 

Fig. 3.16 in the case of the application of the upwind scheme 

3.1.5 Linear Upwind Scheme 

In central differencing, an interpolation is performed, whereas in the case of the linear 

upwind scheme—or linear upwind differencing (LUD)—a linear extrapolation is 

performed based on the value of . φ and its gradient at the centre of the upwind cell. 

Essentially, this scheme can be thought of as an upwind scheme to which a corrective 

extrapolation term is added, derived from the use of the gradient value at the centre 

of the upwind cell (in Fig. 3.18, the slope of the segment connecting .φW , .φP , and 

. φe), and the distance between the centre of the upwind cell and the centre of the 

face (in Fig. 3.18, .δx/2). Figure 3.18 illustrates the calculation of the value of the 

transported quantity . φ at the face . e in a one-dimensional case with a uniform grid. 

The advection velocity . u is positive at the considered face, and the gradient at the 

cell centre is calculated based on the values at the centres of the two upwind cells. 

In formulas, 

. φe =

{

φP + 1
2
(φP − φW ) f or Fe ≥ 0,

φP + 1
2
(φP − φE ) f or Fe < 0.

In constructing the matrix equation representing the conservation equations for each 

of the cells, the term related to the “upwind part” of this scheme will contribute to the 

coefficient matrix and, therefore, will be calculated implicitly through the inversion 

of the coefficient matrix itself. The extrapolation correction term will contribute to
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determining the vector of known terms and, hence, will be calculated explicitly— 

using the values of the necessary quantities obtained from the last iteration or from 

the initial conditions. For this scheme, errors in the gradient calculation due to skew-

ness (see Sect. 3.4) are typically not taken into account, because the extrapolation 

correction term is computed considering the line joining the centre of the upwind 

cell and the centre of the face, rather than the line joining the centres of the two cells 

to which the face belongs. Although this second-order accurate scheme can produce 

acceptable solutions, it does not possess the property of boundedness. Therefore, in 

cases of very high gradients, it may cause non-physical oscillations in the value of 

the transported quantity. With the aim of eliminating these undesirable behaviours, 

Total Variation Diminishing (TVD) schemes have been introduced, as will be shown 

later. 

3.1.6 QUICK Scheme (Quadratic Upwind Interpolation 

for Convective Kinetics) 

This is one of the first so-called higher-order schemes, i.e., schemes with an order of 

accuracy greater than second order. For the calculation of the flow at the interface, 

this scheme uses a quadratic function, whose value at the two centres near the face 

under consideration, as well as at the nearest cell centre in the upwind direction, is 

equal to the value of the considered quantity at these centres. In the case where, as 

shown in Fig. 3.19, .uw > 0 and .ue > 0, a quadratic curve passing through the points 

.φP , .φW , and .φW W is used to calculate .φw, while a quadratic curve passing through 

the points .φE , .φP , and .φW is used to calculate . φe. Referring to Figs. 3.19 and 3.20, 

we aim to find the expression of the quadratic function whose profile is chosen to 

approximate the trend of the quantity . φ within the cell centred at . P: 

. φ = a0 + a1x + a2x2.

In the case where .uw > 0, the coefficients . a0, . a1, and .a2 of such a function can 

be determined by assigning the passage through the points .i − 2, .i − 1, and . i with 

Fig. 3.18 Linear upwind 

scheme
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Fig. 3.19 Profile of 

quadratic function used for 

the calculation of the flow at 

the interface 

Fig. 3.20 Discretised 

computational domain 

coordinates .(−δ,φi−2), .(0,φi−1), and .(δ,φi ), respectively. By imposing the passage 

through the point .i − 1, we obtain: 

.φi−1 = a0. (3.27) 

Imposing the passage through the point . i we get 

.φi = a0 + a1δ + a2δ
2. (3.28) 

Imposing the passage through the point .i − 2 we get 

.φi−2 = a0 − a1δ + a2(−δ)2. (3.29) 

From Eqs. 3.27, 3.28, 3.29 we get 

. a0 = φi−1, a1 =
φi − φi−2

2δ
, a2 =

φi + φi−2 − 2φi − 1

2δ2
.

Knowing the values of the coefficients . a0, . a1, .a2 it is possible to calculate the value 

of .φw at .x = δ/2: 

. φw = a0 + a1

δ

2
+ a2(

δ

2
)2

from which 

.φw =
6

8
φi−1 +

3

8
φi −

1

8
φi−2
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or, equivalently 

. φw =
6

8
φW +

3

8
φP −

1

8
φW W .

Similarly, for .ue > 0 we get 

. φe =
6

8
φP +

3

8
φE −

1

8
φW .

For the calculation of diffusive fluxes on uniform grids, the application of the centred 

scheme is equivalent to the application of the QUICK scheme. This is because the 

slope of the tangent at the midpoint of a parabolic arc is the same as the segment 

connecting the two ends of the arc considered. In the case where .Fw > 0 and . Fe >

0, applying the QUICK scheme for convective terms and the centred scheme for 

diffusive terms, the one-dimensional convective-diffusive transport equation can be 

written as: 

. 

[

Fe

(
6

8
φP +

3

8
φE −

1

8
φW

)

− Fw

(
6

8
φW +

3

8
φP −

1

8
φW W

)]

=

De (φE − φP) − Dw (φP − φW )

when rearranged to highlight the coefficients of the fluxes at the cell centres, this 

becomes: 

. 

(

Dw −
3

8
Fw + De +

6

8
Fe

)

φP =

(

Dw +
6

8
Fw + De +

1

8
Fe

)

φW +

(

De −
3

8
Fe

)

φE −
1

8
FwφW W .

In general, for the QUICK scheme, it can be written 

. aPφP = aW φW + aEφE + aW W φW W + aE EφE E

with 

. aP = aW + aE + aW W + aE E + (Fe − Fw)

and 

. aW = Dw +
6

8
αw Fw + De +

1

8
αe Fe,

aW W = −
1

8
αw Fw +

3

8
(1 − αw)Fw,

aE = De −
3

8
αe Fe −

6

8
(1 − αe) Fe −

1

8
(1 − αw)Fw

while
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. αw = 1 f or Fw > 0 ; αe = 1 f or Fe > 0

αw = 0 f or Fw < 0 ; αe = 0 f or Fe < 0.

The use of two nodes adjacent to the considered one, along with the upwind node, 

ensures that the scheme is conservative and endowed with the property of trans-

portiveness. By using a quadratic curve, the QUICK scheme achieves third-order 

accuracy in the case of a uniform grid. On the other hand, this scheme exhibits con-

ditionally stable behaviour due to the possibility that the coefficients .aW W and .aE E , 

even for small values of the Péclet number (.Pe > 8/3), can become negative. A mod-

ified form of this scheme that is conservative, bounded, and transportive is known 

as Hayase’s QUICK scheme. 2 This scheme uses an appropriate source term that pre-

vents the coefficients from becoming negative, and can be illustrated as follows: the 

value of the transported quantity is calculated as: 

. φw = φW +
1

8
(3φP − 2φW − φW W ) f or Fw > 0,

φe = φP +
1

8
(3φE − 2φP − φW ) f or Fe > 0,

φw = φP +
1

8
(3φW − 2φP − φE ) f or Fw < 0,

φe = φE +
1

8
(3φP − 2φE − φE E ) f or Fe < 0.

The discretisation equation is written in the form 

. aPφP = aW φW + aEφE + S

with 

. aP = aW + aE + (Fe − Fw),

aW = Dw + αw Fw,

aE = De − (1 − αe) Fe,

S =
1

8
(3φP − 2φW − φW W )αw Fw +

1

8
(φW − 2φP − 3φE )αe Fe

+
1

8
(3φW − 2φP − φE )(1 − αw)Fw +

1

8
(2φE − 2φE E − 3φP)(1 − αe)Fe

and 

.αw = 1 f or Fw > 0 ; αe = 1 f or Fe > 0

2 T.  Hayase, J. A. C. Humphrey, R. Greif,  A consistently formulated QUICK scheme for fast and 

stable convergence using finite-volume iterative calculation procedures, “Journal of Computational 

Physics”, January 1992, 98(1), pp. 108–118. 
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αw = 0 f or  Fw < 0 ; αe = 0 f or  Fe < 0. 

The computation of the source term in the parts of the discretisation that contain 

negative coefficients is referred to as deferred correction, because the value of the 

terms necessary for the calculation of. S at the.n-th iteration is taken from the.(n − 1)-

th iteration. In other words, the correction is deferred by one iteration. Although the 

QUICK scheme has many positive aspects (such as reduced numerical diffusivity and 

a higher degree of accuracy), it, like the centred scheme, can produce non-physical 

oscillations. In some cases, this can lead to results that are not acceptable, such as in 

turbulence modelling, where negative values of quantities that can only be physically 

positive may occur. 

3.1.7 Total Variation Diminishing (TVD) Schemes 

This technique aims to mitigate the accuracy issues of the upwind scheme, as well as 

the stability and boundedness issues of the centred scheme. For simplicity, consider 

the calculation of the transported quantity . φ at the face . e in a one-dimensional case 

with a uniform grid, where the advection velocity . u is positive at the considered face 

(see Fig. 3.18). Initially, considering the LUD scheme, it is: 

.φe = φP +
φP − φW

δx

δx

2
= φP +

1

2
(φP − φW ) . (3.30) 

Therefore, the LUD scheme can be considered an upwind first-order accurate scheme, 

which, when modified with additional terms, becomes second-order accurate. The 

additional term is always constructed in accordance with the upwind strategy that 

takes into account the direction of the flow and is an estimate of the gradient. 
(

φP −φW

δx

)

of the transported quantity, multiplied by the distance between the cell centre and the 

considered face. In terms of the total flux .Feφe at the interface, the LUD scheme can 

be viewed as the convective flux .FeφP calculated using the UD scheme, to which a 

corrective term .Fe

(
φP −φW

2

)

is added to increase the order of accuracy. According to 

this logic, the QUICK scheme can also be considered an upwind scheme to which a 

corrective term is added to further increase the order of accuracy: 

. φe = φP +
1

8
[3φE − 2φP − φW ] .

The same applies to the centred scheme: 

.φe = φP +
1

2
(φE − φP) .
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The three aforementioned schemes can, therefore, be summarised in a single formula 

that makes use of an appropriate function . ψ. 

. φe = φP +
1

2
(φE − φP)ψ

from which, it can once again be observed that the total flux .Feφe at the interface can 

be considered as the convective flux .FeφP calculated using the UD scheme, to which 

a corrective term.Feψ (φE − φP) /2 is added. Through the function. ψ, this corrective 

term is proportional to the corrective term of the centred scheme .Fe (φE − φP) /2, 

which represents the variation of . φ as the transition occurs from cell centre . P to cell 

centre . E . It is immediately apparent that for .ψ = 0, the upwind scheme is obtained, 

and for .ψ = 1, the centred scheme is recovered. Furthermore, to determine the value 

of . ψ in the LUD case, it is necessary to rewrite Eq. 3.30 as: 

. φe = φP +
1

2

φP − φW

φE − φP

(φE − φP)

From this, it is evident that for the LUD scheme, .ψ = φP −φW

φE −φP
. Following the same 

strategy, in the case of the QUICK scheme, it is: 

. φe = φP +
1

2

[(

3 +
φP − φW

φE − φP

)
1

4

]

(φE − φP)

with 

. ψ =

(

3 +
φP − φW

φE − φP

)
1

4
.

The coefficient . ψ can be thought of as a function of the ratio . r between the variation 

(gradient) .φP − φW of the quantity . φ from the upwind side and the variation (gradi-

ent) .φE − φP of the quantity . φ from the downwind side with respect to point . P . In  

formulas: 

. ψ = ψ(r) with r =
φP − φW

φE − φP

and so 

. φe = φP +
1

2
(φE − φP)ψ(r)

With .ψ(r) = 0 for the upwind scheme, .ψ(r) = 1 for the centred scheme, . ψ(r) = r

for the LUD scheme, and .ψ(r) = 3+r
4

for the QUICK scheme. Figure 3.21 shows 

the .r − ψ diagram, graphically describing the function .ψ(r). The function .ψ(r), 

called the flux limiter, determines the weight of the additional term, compared to that 

derived from the simple upwind scheme, in calculating the value of the quantity at 

the face. Its aim is to maximise accuracy, stability, and boundedness. The value of
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Fig. 3.21 .r − ψ diagram; in the shaded area the values of . ψ that make the scheme TVD 

.ψ(r) changes depending on the cell considered, even though the expression used to 

calculate it remains the same for the entire computational domain. 

3.1.7.1 Total Variation 

Schemes such as upwind have a low order of accuracy but do not give rise to oscilla-

tions. Conversely, higher-order schemes such as the centred scheme, linear upwind, 

and QUICK exhibit oscillations, although they have a higher order of accuracy. 

It has been shown that a higher-order scheme that is stable and does not present 

oscillations possesses the property of monotonicity-preserving. For a scheme to be 

monotonicity-preserving, it must not... 

• create local maxima or minima; 

• accentuate the value of any maxima or minima present in the solution. 

It is now possible to introduce the concept of total variation, which, with reference 

to Fig. 3.22, can be defined as... 

. T V (φ) = |φ2 − φ1| + |φ3 − φ2| + |φ4 − φ3| + |φ5 − φ4| = |φ3 − φ1| + |φ5 − φ3|

In the literature,3 total variation was initially analysed for the case of non-stationary 

Fig. 3.22 Variation of the 

quantity .φ
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one-dimensional transport equations. For this reason, we refer to TVD (Total Vari-

ation Diminishing) schemes when the total variation of the solution, .T V (φn), at a  

certain time step . n is greater than the total variation of the solution, .T V (φn+1), at the  

next time step.n + 1, i.e.,.T V (φn+1) < T V (φn). A monotonicity-preserving scheme 

is also TVD. 

3.1.7.2 TVD Schemes 

A necessary and sufficient condition for a scheme to possess the TVD property is 

that 

• for .0 < r < 1 it must be .ψ(r) ≤ 2r ; 

• for .r ≥ 1 it must be .ψ(r) ≤ 2. 

Referring to Fig. 3.21, this condition is equivalent to having values of . ψ contained 

within the shaded area of the .r − ψ diagram. From the same figure, it can be noted 

that: 

• the upwind scheme is TVD; 

• the LUD scheme is not TVD for .r ≥ 2; 

• the centred scheme is not TVD for .r < 0.5; 

• the QUICK scheme is not TVD for .r < 3/7 and for .r > 5. 

The goal is to find a particular function .ψ(r) such that its values satisfy the necessary 

and sufficient condition mentioned above for every value of . r . In other words, the 

objective is to determine a function .ψ(r) that limits the flux .Feψ(r)(φE − φP)/2, 

which, when added to the flux .FeφP , makes the scheme of higher order. For this 

reason, .ψ(r) is called the limiter function. 

For a limiter function to make the scheme second-order accurate, it must satisfy 

the following condition: 

1. .ψ(r = 1) = 1 that is, it must pass through the point with coordinates .(1, 1) of the 

.r − ψ diagram, 

2. for .0 < r < 1 it must be .r ≤ ψ(r) ≤ 1, 

3. for .r ≥ 1 it must be .1 ≤ ψ(r) ≤ r . 

Considering the first condition, it becomes clear that the upwind scheme is not second-

order accurate, while both the centred and QUICK schemes are. From the second 

and third conditions, it is evident that the values of the limiter must be constrained 

between those assumed for the centred scheme and those assumed for the LUD 

scheme. These three conditions correspond to the shaded areas on the.r − ψ diagram 

shown in Fig. 3.23. Some of the most well-known limiting functions (or flux limiters) 

are now listed.

3 A. Harten, On a class of high-resolution total-variation stable finite-difference schemes, SIAM 

Journal on Numerical Analysis, 21(1), 1–23, 1984.
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Fig. 3.23 Areas of the .r − ψ diagram for which the limiting function .ψ(r) makes the scheme 

accurate to the second order 

• Van Leer: .ψ(r) =
r + |r |

1 + r
; 

• Van Albada: .ψ(r) =
r + r2

1 + r2
; 

• Min-Mod: .ψ(r) =

{

min(r, 1) f or r > 0

0 f or r ≤ 0
; 

• SUPERBEE: .ψ(r) = max[0,min(2r, 1),min(r, 2)]; 

• Sweby: .ψ(r) = max[0,min(βr, 1),min(r,β)]; 

• QUICK: .ψ(r) = max[0,min(2r, (3 + r)/4, 2]; 

• UMIST: .ψ(r) = max[0,min(2r, (1 + 3r)/4, (3 + r)/4), 2]. 

All the listed limiters have values in the TVD part of the .r − ψ graph and pass 

through the point (1,1) on the same graph, making them all TVD second-order 

accurate schemes. It is noted that Van Leer and Van Albada are continuous functions, 

while the others are piecewise linear functions. The Min-Mod function represents 

the lower edge of the TVD part of the .r − ψ graph, while the SUPERBEE function 

captures its upper edge. The Sweby limiter combines Min-Mod and SUPERBEE 

using the parameter . β: for .β = 1, it yields the Min-Mod, and for .β = 2, it gives  the  

SUPERBEE. Typically, the Sweby limiter is used with .β = 1.5. 

3.1.7.3 Implementation of TVD Schemes 

In this regard, the one-dimensional convection-diffusion equation is considered: 

. 

d

dx
(ρuφ) =

d

dx

(

Ŵ
dφ

dx

)

.

Referring to Fig. 3.1, the discretised form of the equation is given by:
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.Feφe − Fwφw = De (φE − φP) − Dw (φP − φW ) . (3.31) 

In the case of velocity .u > 0, using the TVD approach, the coefficients .φe and . φw

can be expressed as 

. φe = φP +
1

2
ψ(re)(φE − φP),

φw = φW +
1

2
ψ(rw)(φE − φW ),

with re =
φP − φW

φE − φP

and rw =
φW − φW W

φP − φW

.

Recalling that . r represents the ratio between the upwind gradient of . φ and the down-

wind gradient of . φ, .ψ(re) and .ψ(rw) can take the form of one of the flux-limiting 

functions listed above. By substituting the two expressions for .ψ(re) and .ψ(rw) into 

Eq. 3.31, it becomes: 

. (De + Fe + Dw)φP =

(Dw + Fw) φW + DeφE − Fe

[
1

2
ψ (re) (φE − φP)

]

+ Fw

[
1

2
ψ (rw) (φP − φW )

]

.

To highlight the coefficients of .φP , .φW , and .φE , as well as the source term, the 

equation can be rewritten as: 

. aPφP = aW φW + aEφE + SDC
u

with 

. aP = aW + aE + (Fe − Fw)

aW = Dw + Fw

aE = De

SDC
u = −Fe

[
1

2
ψ (re) (φE − φP)

]

+ Fw

[
1

2
ψ (rw) (φP − φW )

]

.

It can be noted that the coefficients.aP ,.aW , and.aE are identical to those of the upwind 

scheme, which ensures the stability of the TVD scheme. The additional flux term that 

makes the scheme second-order accurate, and which contains the limiting function, 

is expressed in the form of source terms with deferred correction—hence the DC 

superscript. As discussed in Sect. 3.1.6, this avoids the possibility of negative values 

appearing for the coefficients, which could destabilise the solution. In this manner, 

the behaviour of the final solution remains TVD. To indicate the case with velocity 

.u > 0, the source term can be rewritten using the superscript . + for the term . r :
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. SDC
u = −Fe

[
1

2
ψ

(

r+
e

)

(φE − φP)

]

+ Fw

[
1

2
ψ

(

r+
w

)

(φP − φW )

]

.

In the case of velocity .u < 0, using the TVD approach, the coefficients .φe and . φw

can be expressed as: 

. φe = φE +
1

2
ψ(r−

e )(φP − φE ),

φw = φP +
1

2
ψ(r−

w )(φW − φP),

with r−
e =

φE E − φE

φE − φP

and r−
w =

φE − φP

φP − φW

In this case, the superscript . − is used to indicate the negative value of the velocity. 

By substituting the two expressions now found for .ψ(r−
e ) and .ψ(r−

w ) into Eq. 3.31, 

and highlighting the coefficients of .φP , .φW , and .φE as well as the source term, it 

becomes: 

. aPφP = aW φW + aEφE + SDC
u

with 

. aP = aW + aE + (Fe − Fw) ,

aW = Dw,

aE = De − Fe,

SDC
u = −Fe

[
1

2
ψ

(

r−
e

)

(φE − φP)

]

− Fw

[
1

2
ψ

(

r−
w

)

(φP − φW )

]

.

For implementation purposes, a single expression is used to encompass both cases, 

.u > 0 and .u < 0: 

. aP = aW + aE + (Fe − Fw) ,

aW = Dw + max (Fw, 0) ,

aE = De + max (−Fe, 0) ,

SDC
u =

1

2
Fe

[

(1 − αe)ψ
(

r−
e

)

− αeψ
(

r+
e

)]

(φE − φP)

+
1

2
Fw

[

αwψ
(

r+
w

)

− (1 − αw) ψ
(

r−
w

)]

(φP − φW )

with 

.αw = 1 f or Fw > 0 ; αe = 1 f or Fe > 0

αw = 0 f or Fw < 0 ; αe = 0 f or Fe < 0.
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3.1.8 The Case of Unstructured Grids 

The interpolation schemes discussed so far were initially developed for orthogonal 

structured grids. In the case of unstructured grids, determining the cell centres to be 

used in the application of the scheme becomes more complicated, as they do not all 

lie on the same line. One approach to address this problem involves reformulating 

the schemes of interest in terms of the gradient .∇φP of the transported quantity 

. φ at the cell centre and the gradient at the considered face, .∇φ f . For the upwind 

scheme, it will be.φ f = φP . For linear interpolation, it will be.φ f = φP + ∇φ f · dP f , 

where .dP f is the vector connecting the cell centre .P with the face centre . f . For  the  

linear upwind scheme, .φ f = φP +
(

2∇φP − φ f

)

· dP f . It is evident that, in this 

case, accurately calculating the value of the gradient of . φ both at the cell centre (see 

Sect. 3.4) and at the centroid of the considered face (see Sect. 3.4.1) is fundamental. 

An alternative approach is described below and is implemented in most commercial 

solvers. Known as Barth and Jespersen’s method, this scheme involves the use of a 

limiter. Specifically, it will be: 

. φ f =

{

φP + ψ f ∇φP · dP f f or F ≥ 0,

φN + ψ f ∇φN · dN f f or F < 0.

The symbol .ψ f represents the limiter, which is necessary to avoid overestimates or 

underestimates resulting from the calculation of the gradient at the cell centre. 

3.2 Reconstruction 

The application of the finite volume method results in a set of cells within which the 

value of the considered quantity is assumed to be constant, leading to a piecewise 

constant behaviour. In practice, this results in the loss of information regarding the 

spatial distribution within each cell. Given that the values are only known at the 

corresponding cell centres, the objective of the reconstruction process is to recover 

the spatial distribution of the considered quantity inside the cell using continuous 

functions, which are typically represented by polynomials of varying degrees. A 

fundamental constraint that these polynomials must satisfy is that they must be con-

servative, meaning that their average value within the cell must equal the value at 

the cell centre. Each cell has a distinct polynomial, determined based on the values 

assumed by the quantity at the centres of adjacent cells. The selection of these cell 

centres for polynomial construction defines what is referred to in the scientific liter-

ature as the stencil. The number of cell centres considered in this process determines 

the degree of the polynomial. When the stencil remains the same for every cell, 

the approach is referred to as linear reconstruction. This is the case for the central 

differencing, linear upwind, and QUICK schemes previously discussed. The use of
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numerical schemes with an order of accuracy higher than the first becomes neces-

sary when discretising equations that give rise to strong gradients or discontinuities, 

even when the initial solutions do not exhibit such features. In general, the error in 

computing the numerical solution increases significantly as the variation of the con-

sidered quantity approaches the minimum resolvable by the computational grid. For 

equations that always ensure smooth solutions, even when starting from continuous 

initial conditions, the numerical error can be reduced by refining both the spatial res-

olution and the time integration step. However, for equations—such as the Burgers 

equation (Eq. 1.10)–that can develop discontinuous solutions even from continu-

ous initial conditions, such an approach does not yield satisfactory results. In these 

cases, numerical schemes with higher-order accuracy are required. Higher-order 

schemes inevitably introduce unwanted spurious numerical oscillations, particularly 

near strong gradients or discontinuities. To minimise these oscillations as much as 

possible, specialised techniques have been developed, among which the non-linear 

reconstruction approach is notable. In non-linear reconstruction, different stencils 

are used depending on the considered cell. Examples of this approach include the 

TVD schemes, the Essentially Non-Oscillatory (ENO) schemes, and the Weighted 

Essentially Non-Oscillatory (WENO) schemes, which are discussed below. 

3.2.1 Essentially Non Oscillatory (ENO) Schemes 

This interpolation method is particularly suitable for cases where the considered 

quantity exhibits discontinuities or strong gradients. As observed in the QUICK 

scheme, classical interpolation methods employ an interpolating polynomial of 

degree . n that passes through each of the .n + 1 centres of the considered stencil. 

In contrast, the present approach utilises a single global interpolation polynomial. 

In the ENO approach, multiple polynomials of degree less than . n are considered, 

each characterised by the following properties: 

• local definition: each polynomial is defined within the interval determined by the 

considered stencil; 

• conservativeness: dividing the integral of the considered polynomial, limited to 

the extent of the given cell, by the cell’s extent yields the value of the quantity at 

the cell centre, which was used to construct the polynomial itself. Considering the 

one-dimensional case of cell . i , let .φi be the value of the considered quantity at the 

cell centre. The cell . i has an extent .�x , bounded by the points .xi−1/2 and .xi+1/2. 

The conservativeness property of the interpolating polynomial .pi (x) is expressed 

as 

. 

1

�x

∫ xi+1/2

xi−1/2

pi (x)dx = φi ;

• adaptability: the selection of the polynomial to be used must depend on the values 

assumed by the quantity at the centres belonging to the considered stencil.
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Fig. 3.24 Cells of one-dimensional discretised computational domain 

Fig. 3.25 Cell centres (in gray) used for the construction of the polynomial . pi
0

To better understand this approach, and with reference to Fig. 3.24, consider the case 

of a one-dimensional domain with a stencil consisting of five cell centres used to 

determine the value of the quantity at the interface between two cells. 

The classical approach in this case prescribes the determination of a single global 

interpolating polynomial of fourth degree, passing through the five cell centres that 

define the considered stencil. The ENO approach, on the other hand, establishes that 

if second-degree polynomials (thus achieving third-order accuracy) are preferred, 

three different polynomials must be determined, each constructed on three different 

centres of the stencil shown in Fig. 3.24. To determine the value of the quantity . φ

at the interface . e, recalling the concepts introduced for the QUICK scheme in Sect. 

3.1.6, the first second-degree polynomial that can be considered, denoted as .p
(0)
i , is  

the one whose value coincides with that of . φ at the centres .i − 2, .i − 1, and . i (see 

Fig. 3.25). This polynomial leads to the following expression: 

.φ(0)
e =

3

8
φi−2 −

10

8
φi−1 +

15

8
φi . (3.32) 

The second second-degree polynomial, denoted as .p
(1)
i , that can be considered is the 

one whose value coincides with that of . φ at the centres .i − 1, . i , and .i + 1 (Fig. 3.26). 

This polynomial leads to the following expression: 

.φ(1)
e = −

1

8
φi−1 +

6

8
φi +

3

8
φi+1. (3.33) 

The third second-degree polynomial, denoted as .p
(2)
i , that can be considered is the 

one whose value coincides with that of . φ at the centres . i , .i + 1, and .i + 2. This  

polynomial leads to the following expression (Fig. 3.27): 

.φ(2)
e =

3

8
φi +

6

8
φi+1 −

1

8
φi+2. (3.34) 

Notice that by substituting . i with the value .i − 1 in the subscripts of Eqs. 3.32, 

3.33, and 3.34, the corresponding values of .φ(0)
w , .φ(1)

w , and .φ(2)
w are obtained. For the 

selection of the single value among the three obtained to be used, the ENO method
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Fig. 3.26 Cell centres (in gray) used for the construction of the polynomial . pi
1

Fig. 3.27 Cell centres (in grey) used for the construction of the polynomial . pi
2

defines the smoothness indicator .β(k), which is defined for each of the polynomials 

.p
(0)
i , .p

(1)
i , and .p

(2)
i as 

.βk =

n
∑

j=1

�x2 j−1

∫ i+1/2

i−1/2

(
d j

dx j
p

(k)

i (x)

)2

dx (3.35) 

and calculated at the considered interface. In Eq. 3.35, .p
(k)

i is the polynomial of 

degree . n (.n = 2 in this case) with the value at . i equal to that of . φ at the cell centre 

. i , associated with the sub-stencil . k (where .k = 0, 1, 2 in this case). The smoothness 

factor is, in fact, the sum of the squares of the derivatives of the polynomials .p
(k)

i : the  

polynomial characterised by lower gradients will have a lower smoothness factor. 

For the second-degree polynomials considered in this example, at the interface . e, it  

will be: 

. β0
e =

1

3

(

4φ2
i−2 − 19φi−2φi−1 + φ2

i−1 + 11φi−2φi − 31φi−1φi + 10φ2
i

)

,

β1
e =

1

3

(

4φ2
i−1 − 13φi−1φi + 13φ2

i + 5φi−1φi+1 − 13φiφi+1 + 4φ2
i+1

)

,

β2
e =

1

3

(

10φ2
i − 31φiφi+1 + 25φ2

i+1 + 11φiφi+2 − 19φi+1φi+2 + 4φ2
i+2

)

.

Once again, by substituting . i with the value .i − 1 in the subscripts of the expressions 

for.βk
e , the expression for.β

k
w is obtained. The polynomial characterised by the lowest 

value of the smoothness factor at the considered interface will determine the choice 

of the value of . φ to be attributed to the interface . e. Notice that in this way, only 

one of the three values, .φ(0)
e , .φ(1)

e , .φ(2)
e , will be used, and the remaining two will be 

discarded. 

3.2.2 Weighted Essentially Non Oscillatory (WENO) Schemes 

These types of schemes are derived from the ENO schemes. The main difference 

between ENO and WENO schemes is that the latter take into account the information 

produced by the interpolating polynomials, which, having a high smoothness factor,
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are discarded in the ENO schemes. To better understand this type of scheme, consider 

the example presented in the previous section related to the ENO schemes. In partic-

ular, it is observed that the total number of cell centres used is five. With this number 

of points, a global interpolation polynomial of fourth degree (fifth order of accuracy) 

could be constructed. The basis of the WENO method is that the global fourth-

degree polynomial can be written as a linear combination of the three second-degree 

polynomials, .p
(0)
i , .p

(1)
i , and .p

(2)
i : 

. φe = γ0φ
(0)
e + γ1φ

(1)
e + γ2φ

(2)
e

In this case, the coefficients. γ0,. γ1, and.γ2must satisfy the condition. γ0 + γ1 + γ2 = 1

and are known as linear weights. To achieve a fifth-order accuracy, the values are 

. γ0 = 
1 
16 
, .γ1 = 5

8
, and .γ2 = 5

16
. In the absence of discontinuities, or strong gradients, 

of . φ in the interval defined by the (in this example, five) cells identified for the 

definition of the polynomials, considering the polynomials .p
(0)
i , .p

(1)
i , and .p

(2)
i leads 

to equivalent results as employing a single fifth-degree polynomial. However, in 

the presence of a discontinuity, this is no longer the case. As previously seen, the 

ENO method uses the smoothness coefficient to choose the polynomial capable of 

ensuring the maximum accuracy order (in this example, the third). In contrast, the 

WENO method determines the best approximation as a convex combination of the 

three values .φ(0)
e , .φ(1)

e , and .φ(2)
e . It is worth recalling that a convex combination is 

a linear combination of elements made with non-negative coefficients summing to 

one: 

. φe = ω0φ
(0)
e + ω1φ

(1)
e + ω2φ

(2)
e

with .ω0 + ω1 + ω2 = 1 and .ωk � 0 for .k = 0, 1, 2. The coefficients .ωk are called 

non-linear weights. In calculating the value of the nonlinear weights, it is necessary 

to keep in mind the following constraints: 

• .ωk ≈ γk for .k = 0, 1, 2 in the case where . φ does not have a discontinuity in the 

stencil consisting of all five cell centres; 

• .ωk ≈ 0 for .k = 0, 1, 2 in the case where . φ has a discontinuity in the stencils 

consisting of the three cell centres used to construct the polynomials .p
(k)

i , except 

for one (i.e., in at least one of the three stencils there must not be a discontinuity). 

Given these constraints, the non-linear weights are defined as 

. ωk =
ω̃k

ω̃0 + ω̃1 + ω̃2

with ω̃k =
γ j

(ǫ + βk)
2

in which . ǫ is a constant necessary to avoid the case of a zero denominator: the value 

typically associated with it is .10−6.
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3.3 Interpolation of Diffusive Fluxes 

In this case, it is necessary to calculate, at the centroid of the face, the component of 

the gradient of the transported quantity along the direction normal to the face itself. 

In fact, referring to Eq. 3.3, it is possible to write 

. 

∫

VP

∇ · (ρŴφ∇φ) dV ≈
∑

f

S f · (ρŴφ∇φ) f =

∑

f

S f · (ρŴφ∇φ) f =
∑

f

ρ f

(

Ŵφ

)

f

∣
∣S f

∣
∣

(
∂φ

∂n

)

f

(3.36) 

In this case, the term .

(

Ŵφ

)

f
represents the diffusivity coefficient, which, depending 

on . φ, could be either viscosity or thermal diffusivity, calculated at the centroid of 

the face. The value of .
(

Ŵφ

)

f
can be obtained using one of the interpolation schemes 

described above (e.g. central differencing, upwind, etc.). 

Given the values of . φ at the centres of the two cells to which the face belongs, it is 

possible to calculate the component.(∂φ/∂n) f of the gradient.∇φ f on the face, along 

the direction defined by the two centres. In the case where this direction coincides 

with the normal to the face (see Fig. 3.28), it will not be necessary to calculate any 

additional components. However, if the directions of the normal to the face and 

the line joining the two centres do not coincide (see Fig. 3.29), the angle between 

these two directions is referred to as non-orthogonality. In the presence of non-

orthogonality, the vector normal to the face can be decomposed into two components. 

The first, known as the normal component, is along the direction joining the centres 

of the two cells to which the face belongs. The second component, determined by 

the chosen decomposition method, is referred to as transverse diffusion or “cross 

diffusion”. 

In the case of two cells of an orthogonal grid, as shown in Fig. 3.28, the diffusive 

flux can be calculated with a second-order approximation using a centred difference. 

.S · ∇φ f = |S|
φN − φP

|d|
(3.37) 

Fig. 3.28 Orthogonal grid
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Fig. 3.29 Non-orthogonal 

grid 

where S is the vector normal to the face, .φN is the value of . φ in the centre of cell N, 

.φP is the value of . φ in the centre of cell P, and d is the vector connecting the two cell 

centres. 

In the case of a non-orthogonal grid (see Fig. 3.29), the vector S can be decomposed 

into its components along two directions: 

• the direction connecting the two cell centres identified by the unit vector . �; 

• the direction parallel to that of the face and identified by the unit vector . k. 

Indicating with . n̂ the unit vector normal to the face it is .n̂ = � + k (see Fig. 3.30). 

At this point, it is possible to write Eq. 3.36 as 

. 

∑

f

S f · (ρŴφ∇φ) f =
∑

f

∣
∣S f

∣
∣
[

(ρŴφ∇φ) f · n̂ f

]

=
∑

f

S f

[

(ρŴφ∇φ) f · n̂ f

]

in which . n̂ is the unit vector of the vector . S. That is 

. 

∑

f

S f

[

(ρŴφ∇φ) f · n̂ f

]

=
∑

f

S
[

(ρŴφ∇φ) f · (� + k) f

]

=

∑

f

S f

[

(ρŴφ∇φ) f · � f

]

+
∑

f

S f

[

(ρŴφ∇φ) f · k f

]

. (3.38) 

In Eq. 3.38, the orthogonal term is clearly visible 

. 

∑

f

S f

[

(ρŴφ) f ∇φ f · � f

]

Fig. 3.30 Over-relaxed 

decomposition method
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and the non-orthogonal term, also called non-orthogonal correction, 

. 

∑

f

S f

[

(ρŴφ) f ∇φ f · k f

]

.

The orthogonal term can be calculated considering that 

. ∇φ f · � = |�|
φN − φP

|d|
.

As demonstrated in Sect. 3.1, the discretisation process leads to the formulation of 

a discretised conservation equation for each grid element. The equations for all the 

elements are then reorganised to form a system, where each row contains the ele-

ments of the discretised conservation equation calculated at the centre of the generic 

cell. The elements on the main diagonal correspond to quantities related to the centre 

of the cell, while the off-diagonal elements represent quantities related to the centres 

of adjacent cells. The contribution of the orthogonal term appears in the coefficient 

matrix of this system of equations and can therefore be solved implicitly, which 

enhances the numerical stability of the solution process. Conversely, the contribu-

tion of the non-orthogonal term (.∇φ f · k) acts as a source term, appearing in the 

column vector of known terms. As a result, it must be solved explicitly, considering 

the values of . φ calculated at the previous iteration or determined from the initial 

conditions. This explicit calculation, however, contributes to a reduction in the sta-

bility of the numerical solution process. As the level of non-orthogonality between 

the cells increases, the relative magnitude of the non-orthogonal terms grows, which 

in turn decreases the stability of the numerical solution. To mitigate the effects of the 

non-orthogonal contribution, two approaches can be considered: 

1. generate a computational grid with a low degree of non-orthogonality. 

2. artificially limit the value of the non-orthogonal contribution so that it does 

not exceed the value of the orthogonal contribution or a fraction thereof (see 

Sect. 6.1.4). 

Regarding point 2, it is important to specify that a greater artificial reduction of 

the non-orthogonal contribution corresponds to greater stability, but also to reduced 

accuracy, which is acceptable if the number of cells with high non-orthogonality 

remains relatively small. It should be noted that, given the vector . S and, therefore, its 

unit vector . n̂, as well as the direction of the vector . �—determined by the line con-

necting the two cell centres to which the considered face belongs—the possibilities 

for the decomposition of . S are infinite. Among these, we highlight two approaches: 

1. the minimum correction method, which ensures that the vectors .� and . k are 

orthogonal, 

2. the over-relaxed approach, illustrated in Fig. 3.30, which ensures that the vectors 

. S and . k are orthogonal.
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The over-relaxed approach offers greater numerical stability because, as the non-

orthogonality level increases, both the non-orthogonal and orthogonal compo-

nents increase. In contrast, in the minimum correction approach, as the level of 

non-orthogonality increases, the non-orthogonal component increases while the 

orthogonal component decreases. In summary, 

. (∇φ) f · k f = (∇φ) f ·
(

S f − d f

)

=

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

(∇φ) f ·
(

n̂ − d̂ cos θ
)

S f minimum correction,

(∇φ) f ·
(

n̂ − d̂
)

S f normal correction,

(∇φ) f ·

(

n̂ − d̂
1

cos θ

)

S f over-relaxed

where .S = n̂S is the vector normal to the face, . d is the vector connecting the two cell 

centres, and . d̂ is its unit vector. Additionally, . k represents the vector of transverse 

diffusion, and . θ is the angle formed between the line connecting the two cell centres 

and the direction normal to the face. It is clear that the transverse diffusion term 

cannot be calculated using the values of. φ at the cell centres. Therefore, the calculation 

proceeds by first determining the gradient.∇φ at the cell centres and then interpolating 

to obtain its value on the face, .(∇φ) f (see Fig. 3.2). 

. (∇φ) f = fx (∇φ)P + (1 − fx ) (∇φ)N

where the gradients at the two cell centres are calculated using Eq. 3.40. This method 

of calculating the gradient on the face is also referred to as the Green-Gauss method 

(Green-Gauss cell-based gradient), and it is second-order accurate. Once the value 

of the transverse diffusion term is obtained, it is added to the algebraic equation of the 

cell as a source term. In summary, for orthogonal grids (see Fig. 3.28), the diffusive 

flux can be calculated using a second-order accurate approximation via Eq. 3.37. In  

the case of a non-orthogonal grid (see Fig. 3.29), the vector . S can be calculated as 

the sum of two vectors (see Fig. 3.30). In the over-relaxed method, it turns out to be 

. � =
d

d · S
|S|2.

From which 

.S · (∇φ) f = |�|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal contribution

+

contribution non orthogonal
︷ ︸︸ ︷

k · (∇φ) f (3.39)
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3.4 Calculation of the Gradient at the Cell Centre 

The computation of the gradient at the cell centre is essential for both the application 

of discretisation schemes for the convective terms of the general transport equation 

(see Sect. 6.1.2) and for the discretisation of specific terms (e.g., the gradient of 

the pressure) that appear in the discretised momentum conservation equation (see 

Eq. 2.42). Moreover, the calculation of the velocity gradient at the cell centre is 

necessary for determining the production terms of turbulent kinetic energy in turbu-

lence modelling or for the determination of shear stress in flows with non-Newtonian 

fluids. A widely used approach for calculating the gradient is based on the Gauss 

theorem (see Sect. 1.1.6), which states that, for each closed volume .V bounded by 

a surface .∂V , the integral of the gradient of a generic quantity (scalar or vector) . φ

over the volume .V is equal to the integral of . φ over the surface .∂V . In mathematical 

terms: 

. 

∫

V

∇φ dV =

∮

∂V

φ dS

in which .dS is the vector normal to the surface, representing the generic elementary 

surface element. To discretise this equation, the mean value theorem can be applied 

(see Sect. 1.5.2) to the left-hand side. 

. 

∫

V

∇φ dV ≈ ∇φV

where .∇φ is the average value of the gradient within the volume . V . Therefore, it can 

be expressed as 

. ∇φ ≈
1

V

∮

∂V

φ dS

and for the generic cell with centroid . P

. ∇φP ≈
1

VP

∮

∂VP

φ dS.

Then, by applying the mean value theorem to the faces that bound the cell, it becomes 

.∇φP ≈
1

VP

∑

f ∼nb(P)

φ f S f (3.40) 

where we have set .∇φP = ∇φP . .nb(P) is the number of faces that delimit the cell 

with centroid . P , .φ f is the average value of . φ on the generic face . f of cell . P , and 

.S f is the vector exiting from cell . P , normal to face . f , with the area of . f as its 

magnitude.
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The calculation of .φ f can be performed using two possible approaches: the first, 

known as cell-based, and the second, known as node-based. 

Referring to Fig. 3.31, in the  cell-based approach, it is 

.φ f = gPφP + (1 − gP)φN (3.41) 

where .φP is the value of . φ at the centroid of the considered cell, .φN is the value of 

. φ at the centroid of the cell that shares face . f with the considered cell, and .gP is the 

weight factor that depends on the geometric characteristics of the two cells sharing 

the considered face: 

. gP =
dP f

d

where .dP f is the distance between the centroid .P of the considered cell and the 

centroid of face . f , while . d is the distance between .P and the centroid .N of the 

cell that shares face . f with the cell of centroid . P . Equation 3.41 is a second-order 

accurate approximation only in the case where the intersection between face . f and 

the line connecting the two centroids .P and .N coincides with the centroid of the 

face. This condition is not satisfied in most non-orthogonal structured grid cases, as 

well as in most unstructured grid cases. Referring to Fig. 3.31, where . f denotes both 

the face considered and its centroid, and . f ′ denotes the intersection between face . f

and the line connecting the two centroids .P and . N , the  “skewness error” is defined 

as the distance between . f and . f ′. Therefore, in the case of non-zero skewness error, 

Eq. 3.41 will provide the value of .φ f ′ . In the case of grids characterised by high 

skewness error values, one can use the node-based approach, in which the value of 

.φ f is obtained as the average of the . φ values at the vertices of the face considered. 

The value at the vertices is in turn determined by calculating the weighted average 

of . φ at the centres of the cells sharing the considered vertex. 

The value of . φ at the vertex . n of the face considered can be obtained using the 

following formula 

Fig. 3.31 Distortion and 

non-orthogonality
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. φn =

N B(n)
∑

k=1

φFk

‖rn − rFk
‖

N B(n)
∑

k=1

1

‖rn − rFk
‖

where .φFk
denotes the value of . φ on the .k-th face to which the considered vertex 

belongs, calculated by simple linear interpolation between the values of . φ at the 

centres of the two cells to which the .k-th face belongs. .N B(n) is the total number of 

cells to which the considered vertex belongs, and .‖rn − rFk
‖ is the distance between 

the vertex . n and the centroid of the considered cell. Once the values at all the vertices 

of the considered face are known, the face is divided into triangles, each of which 

has for vertices two vertices of the face and the intersection point between the face 

and the line connecting the two centres of the cells to which the face belongs. In 

the presence of skewness error, this last point does not coincide with the centroid 

of the face. For each triangle, the average value .φT of the values at the vertices is 

calculated. Subsequently, the value .φ f of the quantity on the face is obtained as a 

weighted average, as follows: 

. φ f =

∑

ST φT

S f

where .ST is the area of each triangle and .S f is the area of the considered face. 

This approach entails a computational burden due to the necessity of managing the 

information associated with the vertices of the faces. However, it provides greater 

accuracy in the presence of distorted cells, given its independence from the distortion 

error. Another method for computing the gradient at the cell centre is known as the 

Least-Squares Fit (LSF). Consistent with the constraint of second-order accuracy, 

this method assumes a linear variation of the quantity . φ and defines an error function 

for each neighbouring cell .N surrounding the considered cell . P: 

. ǫN = φN −
[

φP + d · (∇φ)P

]

where the vector. d connects the two cell centres. P and. N . It then proceeds to minimise 

the mean squared error (least-squares error) defined as 

. ǫ2P =
∑

N

w2
N ǫ2N

in which the weight function .w is defined as .wN = 1
|d|
. The expression used for the 

calculation of the gradient at the centre of cell .P is 

. (∇φ)P =
∑

N

w2
NG

−1 · d (φN − φP)
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with 

. G =
∑

N

w2
Ndd.

This calculation method, like the vertex-based method, is unaffected by the distortion 

error, which, in contrast, influences the results obtained using the cell-based approach. 

3.4.1 Calculation of the Gradient on the Centroid of the Faces 

As observed, the need to perform this calculation arises from the discretisation pro-

cess of the diffusive terms of the general transport equation, particularly when the 

computational grid contains non-orthogonal cells. In such cases, it is necessary to 

calculate the value of the non-orthogonal correction term. One possible approach for 

calculating the gradient at the centroid of the faces involves correcting the average 

gradient value computed at the centres of the two cells to which the face belongs. 

Specifically, with reference to Fig. 3.31, the gradient of . φ at the centroid of the face, 

denoted as .∇φ f , will be 

. ∇φ f = ∇φ f +

[
φN − φP

d
−

(

∇φ f · e
)
]

e

in which 

. ∇φ f = gP∇φP + gN ∇φN , gP =
dP f

d
, gN =

dN f

d
e =

d

d
, d = rN − rp

with . e being the unit vector of the vector . d, .rP the position vector of the cell centre 

. P , and .rN the position vector of the cell centre . N . 

3.5 Calculation of the Time Derivative or Transient Term 

Typically, the evolution of a quantity . φ is described by an equation of the type 

. 

∂ (ρφ)

∂t
+ L(φ) = 0

in which the term .L(φ) is an operator that includes all terms (convection, diffusion, 

sources, etc.) that are not dependent on time. Integrating over the cell with centroid 

. C , we obtain 

.

∫

VC

∂ (ρφ)

∂t
dV +

∫

VC

L(φ) dV = 0
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and discretising in space, we obtain 

. 

∂ (ρCφC)

∂t
VC + L(φt

C) = 0

where.VC is the cell volume, while.L(φt
C) is the spatial discretisation operator at time 

. t . Traditionally, the approach used for time discretisation involves the application of 

finite differences, where the Taylor series expansion of the term .

∂ (ρφ)

∂t
is employed 

to express the derivative in terms of the values at the cell centres. The finite volume 

method, on the other hand, involves applying strategies similar to those used in the 

spatial discretisation of the convective term, but instead of integrating in space, the 

integration is performed in time. To better understand this approach, consider a two-

dimensional computational domain in which only one direction of integration in 

space is considered. This integration in space will correspond to the time evolution. 

Let .�t denote the time integration interval. 

• The value at the centre of the spatial discretisation cell corresponds to the value 

of . φ at a specific time instant . t ; 

• The value on the faces of the spatial discretisation cell corresponds to the value of 

. φ at the instant .t ± �t/2. 

The time discretisation cell will therefore have its centre positioned at the time coor-

dinate. t , and its two faces at the time coordinates.t − �t/2 and.t + �t/2. Integrating 

then over the time interval .[t − �t/2, t + �t/2] it is (Fig. 3.32) 

. 

∫ t+�t/2

t−�t/2

∂ (ρCφC)

∂t
VC dt +

∫ t+�t/2

t−�t/2

L(φC)dt = 0.

Considering that .VC is constant over time, the first integral results in a simple dif-

ference, while, by applying the rule of the average value, the second integral yields 

only the value of the integrand at time . t . 

. VC (ρCφC)t+�t/2 − VC (ρCφC)t−�t/2 + L(φt
C)�t = 0.

Fig. 3.32 Temporal 

discretisation 
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Dividing by .�t , we obtain 

.

(ρCφC)t+�t/2 − (ρCφC)t−�t/2

�t
VC + L(φt

C) = 0 (3.42) 

From this, it is clear that interpolation between the values at times . t , .t − �t , etc., is 

required to obtain the values at the “intermediate” times.t − �t/2 and.t + �t/2. Just  

as in the case of spatial discretisation of convective terms, the choice of interpolation 

method will influence the accuracy of the results. 

3.5.1 Implicit Euler Scheme 

This time integration scheme is derived from the upwind spatial integration scheme. 

It is, in fact, assumed that 

. (ρCφC)t+�t/2 = (ρCφC)t and (ρCφC)t−�t/2 = (ρCφC)t−�t .

Substituting into Eq. 3.42, we obtain 

. 

(ρCφC)t+�t − (ρCφC)t

�t
VC + L(φt

C) = 0.

3.5.2 Crank-Nicolson Scheme or Central Difference Profile 

This time integration scheme performs a linear interpolation between the value of 

the quantity at time .t − �t and the value at time .t + �t . It is, therefore, 

. (ρCφC)t+�t/2 =
1

2
(ρCφC)t+�t +

1

2
(ρCφC)t ,

(ρCφC)t−�t/2 =
1

2
(ρCφC)t +

1

2
(ρCφC)t−�t .

Substituting into Eq. 3.42, we obtain 

.

(ρCφC)t+�t − (ρCφC)t−�t

2�t
VC + L(φt

C) = 0.
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3.5.3 Backward Scheme or Second Order Upwind Euler 

This time integration scheme is derived from the linear upwind spatial integration 

scheme. In fact, we set 

. (ρCφC)t+�t/2 =
3

2
(ρCφC)t −

1

2
(ρCφC)t−�t ,

(ρCφC)t−�t/2 =
3

2
(ρCφC)t−�t −

1

2
(ρCφC)t−2�t .

Substituting into Eq. 3.42, we obtain 

.

3 (ρCφC)t − 4 (ρCφC)t−�t + (ρCφC)t−2�t

2�t
VC + L(φt

C) = 0.



Chapter 4 

Linear Systems and Their Solution 

In the previous chapter, we observed that the discretisation process results in a dis-

cretised conservation equation for each of the .N grid elements. It is possible (see 

Sect. 3.1.1) to assemble the equations corresponding to all .N elements into a system 

of equations, which, in its compact form, can be written as 

.Aφ = b. (4.1) 

In the following representation, the elements of the main diagonal correspond to the 

contribution of the generic cell and are represented by black squares. White squares 

denote the off-diagonal elements of the matrix, which account for the contributions 

of adjacent elements that share at least one face with the considered cell. The first row 

corresponds to the first cell of the discretised domain, while the last row represents 

the last cell. Since each cell shares a limited number of faces with its neighbouring 

cells, most elements of the matrix .A will be zero. In the case of structured grids, 

the non-zero elements will be arranged along the main diagonal and the secondary 

diagonals. 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 � �

� � � �

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

� � aC � �

. . .
. . .

. . .
. . .

� � � �

� � aN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

φC

...

φN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
...

bC

...

bN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Fig. 4.1 Example of a 

structured grid 
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Fig. 4.2 Computational 

domain 

An example of a structured grid comprising six hexahedral cells is shown in Fig. 4.1. 

The edges of cell 3 are highlighted with a thicker line, while the faces of cell 1 that 

are shared with other cells are shaded. For this grid, the coefficient matrix can be 

assembled as shown in Fig. 4.2. 

The coefficients resulting from the application of the generic conservation equa-

tion to a single cell are all placed in a single row. By ordering the rows consistently 

with the numbering assigned to the cells, the coefficients associated with cell 0 will 

be placed in row 0 of the matrix, those related to cell 1 in row 1, and so forth. 

Cell 0 shares one face with cell 1 and another with cell 3. Therefore, the com-

putation of fluxes through these two faces is required for the discretisation of the 

considered conservation equation applied to this cell. Consequently, the terms .a01— 

corresponding to the fluxes through the face shared between cell 0 and cell 1—and 

.a03—corresponding to the fluxes through the face shared between cell 0 and cell 

3—will be non-zero. Faces that belong exclusively to a single cell are referred to as 

“boundary” faces. Subsequently, specific boundary conditions applied to these faces 

will be considered. 

.

⎡
⎢⎢⎢⎢⎢⎢⎣

a00 a01 0 a03 0 0

a10 a11 a12 0 a14 0

0 a21 a22 0 0 a25

a30 0 0 a33 a34 0

0 a41 0 a43 a44 a45

0 0 a52 0 a54 a55

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4.2) 

It can be observed that the coefficient matrix is significantly influenced by the 

properties of the grid: 

• the number of cells in the grid corresponds to the size of the matrix and thus to 

the number of elements on the main diagonal.
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• the number of non-zero coefficients above the main diagonal is equal to the number 

of non-zero coefficients below it, and both are equal to the number of internal faces 

of the grid. 

• each coefficient on the main diagonal corresponds to the associated cell (identified 

by the row number). 

• the coefficients outside the main diagonal are associated with the cells (identified 

by the column number) adjacent to the given cell. 

Finding the values of the unknowns .φi in Eq. 4.1 requires inverting the matrix A, 

yielding .φ = A−1b. Among the characteristics that the coefficient matrix A must 

satisfy, the most important being the values of the coefficients themselves, as they 

are strongly influenced by the geometric properties of the cells, such as orthogonality 

and skewness. An individual cell with unfavourable values can lead to the failure of 

the inversion process (divergence). The methods for inverting a matrix can initially be 

classified as direct and indirect. For reasons related to excessive computer memory 

and processing requirements, the former are impractical. Indirect methods iteratively 

apply a solution algorithm until the predefined level of convergence is reached, thus 

eliminating the requirement to compute the final solution in a single iteration. 

4.1 The Jacobi Method 

This method is the simplest of the iterative methods for solving linear systems. The 

solution process begins by assigning an initial guess to each element of the unknowns 

column vector .φ (initialisation). Assuming that the elements of the main diagonal 

are non-zero and using the initial guess values of . φ, the first equation is solved to 

obtain a new estimate of. φ1, the second to obtain a new estimate of. φ2, and so on until 

.φN is reached. Once the new estimate of .φN has been obtained, the first iteration 

is concluded and the new values of .φ can then be used to begin a new iteration. 

The iterative process continues until the difference between successive iterations is 

negligible or a stopping criterion is met. The expression for the new estimate of . φ is 

. φ
(n)

j =
1

ai i

⎛
⎝b j −

N∑

j=1, j �=i

ai jφ
(n−1)
j

⎞
⎠ i, j = 1, 2, 3, . . . , N

which, in matrix form, can be expressed using the following decomposition of the 

coefficient matrix
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. 

⎡
⎢⎢⎢⎣

a11 0 . . . 0 0

0 a22 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 aN N

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

...

φN

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0 a12 . . . a1N−1 a1N

a21 0 . . . a2N−1 a2N

...
... . . .

...
...

aN1 aN2 . . . aN N−1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

φ1

φ2

...

...

φN

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
b2
...
...

bN

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The updated value .φ(n) can be obtained as 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
(n)
1

φ
(n)
2

...

(n)

...

φ
(n)

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

a11 0 . . . 0 0

0 a22 . . . 0 0
...

... . . .
...

...

0 0 . . . 0 aN N

⎤
⎥⎥⎥⎦

−1

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

b1
b2
...
...

bN

⎤
⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎣

0 a12 . . . a1N−1 a1N

a21 0 . . . a2N−1 a2N

...
... . . .

...
...

aN1 aN2 . . . aN N−1 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

φ
(n−1)
1

φ
(n−1)
2
...
...

φ
(n−1)
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4.3) 

The coefficient matrix A can be decomposed into 

. A = D + L + U

where D is a diagonal matrix of order .N whose diagonal elements are the diagonal 

elements of A, L is a matrix of order .N whose subdiagonal elements are the sub-

diagonal elements of A and all other elements are zero, and U is a matrix of order 

.N whose superdiagonal elements are the superdiagonal elements of A and all other 

elements are zero. Considering this decomposition, Eq. 4.3 can be written as 

. φ(n) = D−1b − D−1 (L + U)φ(n−1).

4.2 The Gauss-Seidel Method 

This method is similar to that of the Jacobi method, although it is typically preferred 

due to its superior convergence properties and its lower memory storage require-

ments. Unlike the Jacobi method, this method always uses the most updated value 

of each of the unknowns considered. As previously described, the resolution process 

begins with the initialisation phase. Once the value of .φ1 is obtained by solving the
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first equation, the value of .φ2 is obtained by solving the second equation using the 

value of.φ1 just calculated, rather than the initial guess, as in the Jacobi method. Once 

the value of .φ2 is obtained from the second equation, the value of .φ3 is obtained by 

solving the third equation using the value of .φ2 just calculated, and so on, until the 

value of .φN is calculated. The expression for the new estimate of . φ is 

.φ
(n)

j =
1

ai i

⎛
⎝b j −

i−1∑

j=1

ai jφ
(n)

j −

N∑

j=i+1

ai jφ
(n−1)
j

⎞
⎠ i, j = 1, 2, 3, . . . , N (4.4) 

which, in matrix form, becomes 

. φ(n) = − (D + L)−1 Uφ(n−1) + (D + L)−1 b.

The set of operations that results in obtaining the new value of . φ is often referred to 

as a sweep. This method requires less memory capacity since the new value of each 

unknown overwrites the old value, thus eliminating the need to store both the old 

and new values separately. 

4.2.1 Numerical Example 

To better illustrate the characteristics of the Gauss-Seidel method, a numerical exam-

ple is provided. This numerical example demonstrates the solution to a linear system 

resulting from the application of the finite volume method to a case of steady heat 

conduction on a two-dimensional domain. In Fig. 4.2, the computational domain con-

sists of the shaded part. The boundary conditions are as follows: the left border with 

a constant temperature of .100K, the right border with a constant temperature of . 0K, 

and the upper and lower borders, which are adiabatic. The computational domain has 

been discretised into eight cells, whose numbering is shown in Fig. 4.3. Recalling 

Sect. 3.1, the equation describing the phenomenon of steady heat conduction is 

.0 = ∇ · (k∇T ) + S (4.5) 

where . k denotes the thermal conductivity of the considered material, set to . 1 W/m ·

K. . T is the temperature, and . S is the source term, including the contribution from the 

Fig. 4.3 Cell numbering 
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boundary conditions. According to the finite volume method, the discretised form of 

Eq. 4.5 applied to the cell with centre P and to the neighbouring cell with centre N is 

.TP

∑

f

A f k f

|xN − xP |
+
∑

f

TN

(
−

A f k f

|xN − xP |

)
= SP VP , (4.6) 

where .A f is the area of the generic face (in the two-dimensional case, a length), 

the distance .|xN − xP | is the distance between the centres of the two considered 

cells, and .VP is the volume of the cell (in the two-dimensional case, an area). For 

simplicity, the expression of Eq. 4.6 is given in the case of cell number 2 of Fig. 4.3: 

. T2

(
1 · A f 12

x2 − x1
+

1 · A f 23

x3 − x2
+

1 · A f 26

y2 − y6

)
− T1

1 · A f 12

x2 − x1
− T3

1 · A f 23

x3 − x2
− T6

1 · A f 26

y2 − y6
= 0

(4.7) 

The symbol .Ai j denotes the face shared between the cell centred at . i and the cell 

centred at . j . Applying Eq. 4.6 to all eight cells in the computational domain results 

in the following system of equations, expressed in matrix form: 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 −1 0 0 0

−1 3 −1 0 −1 −1 0 0

0 −1 3 −1 −1 0 −1 0

0 0 −1 2 0 0 0 −1

−1 0 0 0 2 −1 0 0

0 −1 0 0 −1 3 −1 0

0 0 −1 0 0 −1 3 −1

0 0 0 −1 0 0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1

T2

T3

T4

T5

T6

T7

T8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
b4
b5
b6
b7
b8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in which the terms .b j represent the known terms, derived solely from the application 

of the boundary conditions, since there are no sources within the computational 

domain. Applying the Gauss-Seidel method, the first equation of the system (4.2) 

has the form 

. 2T1 − T2 − T5 = b1.

The first estimate of .T1 is obtained as 

.T1 =
1

2
(T2 + T5 + b1) (4.8) 

in which the initial guess values for both .T2 and .T5 are used. The algorithm then 

proceeds to the second equation 

. − T1 + 3T2 − T3 − T6 = b2
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to obtain the first estimate of .T2 using the previously calculated value for .T1 and the 

initial guesses for .T3 and . T6: 

.T2 =
1

3
(T1 + T3 + T6 + b2) (4.9) 

Having completed the calculation of . T2, the values of the remaining temperatures 

up to .T6 can be calculated, thereby concluding the first iteration (sweep). The pro-

cess is repeated until the preselected convergence criterion is reached. Note that 

the Gauss-Seidel algorithm determines the updated value of the unknown—in this 

case, the temperature—according to the numbering of the cells: the value of .T1 is 

first calculated, then . T2, then . T3, and so on. The finite volume method then deter-

mines the value of the unknown as the weighted average of the same unknown in the 

neighbouring cells, along with the contribution of the source term, which includes 

the contribution from the boundary conditions (see Eqs. 4.8 and 4.9) in accordance 

with the general formula (4.4). Assuming an initial condition of a temperature of . 0K 

for all cells, at the first iteration, the following value of temperature is obtained for 

cell . 1: 

. T1 =
1

2
(0 + 0) +

1

2

100

1/2
= 100K.

The contribution to the determination of .T1 is evident from the values of cells . 2 and 

. 5, as well as the boundary condition. In the case of cell . 2, only cells . 1, . 3, and . 6

contribute to determining the corresponding temperature value, and, of these, only 

cell . 1 includes the contribution derived from the boundary condition: 

. T2 =
1

3
(100 + 0 + 0) +

1

3
0 = 33.3K.

In the case of cell. 3, only cells. 2,. 4, and. 7 contribute to determining the corresponding 

temperature value, and, of these, only cell . 2 includes the contribution derived from 

the boundary condition: 

. T3 =
1

3
(33.3 + 0 + 0) +

1

3
0 = 11.1K.

At this point, it is clear that in the Gauss-Seidel algorithm, the information origi-

nating from the boundary condition is propagated within the computational domain 

according to the order initially assigned to the cells. The numbering of the cells 

thus assumes fundamental importance in determining the convergence of the entire 

iterative process. By changing the cell numbering, a slowdown in the convergence 

occurs, as can be seen by comparing the temperature values obtained above with 

those derived from the alternative numbering shown in Fig. 4.4:
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Fig. 4.4 Alternative cell 

numbering 
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Fig. 4.5 Example of a case 

where the numerical and 

physical directions of 

information propagation do 

not coincide 

. T1 =
1

2
(0 + 0) +

1

2

100

1/2
= 100K,

T2 =
1

2
(0 + 0) +

1

2
0 = 0K,

T3 =
1

3
(0 + 0 + 0) +

1

3
0 = 0K.

The preceding discussion highlights the need for algorithms such as Cuthill and 

inverse Cuthill to achieve the correct cell numbering, as grid generation software 

typically assigns a numbering based on requirements different from those needed 

for the efficient execution of iterative methods for matrix inversion. The (numerical) 

direction of information propagation resulting from the execution of the Gauss-Seidel 

algorithm may not align with the (physical) direction dictated by the boundary con-

ditions. Referring to Fig. 4.5, consider the case where the two boundary conditions 

are swapped: convergence will slow due to the numerical direction of information 

propagation proceeding from left to right (in accordance with the cell numbering), 

while the physical direction propagates from right to left, given the initial condition 

of zero temperature across the entire domain and a temperature of .100K on the right 

edge of the computational domain. To overcome this issue, when the physical direc-

tion of information propagation is not known a priori, the symmetric Gauss-Seidel 

algorithm is used, which involves reversing the numerical direction of information 

propagation between one iteration and the next.
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4.3 Diagonal Dominance and Scarborough Criterion 

A diagonally dominant matrix is a square matrix of order . n in which the absolute 

value of each diagonal element is greater than or equal to the sum of the absolute 

values of all the remaining elements in the same row. If .ai j denotes the generic 

element of the matrix . A, the following condition must hold: 

. |ai i | �

n∑

j=1, j �=i

|ai j |.

A diagonally dominant matrix is always singular (that is, it has a determinant dif-

ferent from zero and, therefore, is invertible). The Scarborough criterion provides a 

sufficient condition for convergence in the inversion of the coefficient matrix using 

iterative methods. Specifically, adherence to this condition ensures the existence of 

at least one iterative method that results in convergence. However, as a sufficient 

condition, convergence could also be achieved even if the criterion is not met. The 

Scarborough criterion can be expressed in terms of the coefficients of the generic 

discretised equation present in the matrix. . A as 

.

∑
|anb|

|aP |

{
� 1 for all equations

< 1 for at least one equation
(4.10) 

where .aP is the coefficient linked to the cell with centroid P, while .anb are the 

coefficients linked to the cells that share at least one face with the cell with centroid 

P, or those cells involved based on the chosen discretisation scheme. A coefficient 

matrix that respects this criterion is certainly diagonally dominant. This ensures that 

the boundedness criterion is also satisfied. According to the boundedness criterion, 

the absolute value of a generic transported quantity . φ in a cell is never greater than 

the same quantity in the adjacent cells, in the absence of source terms. To achieve 

diagonal dominance, it is therefore necessary to have high values for the coefficients 

on the main diagonal and low values for the off-diagonal terms. This goal can be 

achieved through: 

• constructing a computational grid with favourable geometric characteristics 

(orthogonality and skewness), 

• ensuring that the source terms, moved to the right-hand side of the equation, are 

negative, 

• reducing the time integration step size, 

• resorting to the under-relaxation technique.



134 4 Linear Systems and Their Solution

4.4 Residue and Correction/Error 

As mentioned above, iterative methods for solving systems of equations involve 

executing numerous iterations to obtain updated values of the unknown quantity . φ

in each cell. The value .φn , obtained at the . nth iteration, does not necessarily satisfy 

Eq. 4.1. At this point, it is possible to define the residual error, or simply the residual, 

as 

.Rn = b − Aφn. (4.11) 

It is useful to remember that both .Rn and .φn are column matrices, the number of 

elements of which coincides with the number of cells with which the computational 

domain has been discretised. Indicating by .φn+1 the value of .φ obtained at the 

.(n + 1)-th iteration and assuming that this is the exact value of .φ (the one that 

satisfies Eq. 4.1), it can be written 

. Aφn+1 = b.

Now, indicating by .φ′ the difference in the value of . φ between the .n-th iteration and 

the .(n + 1)-th iteration, it can be written 

.φn+1 = φn + φ′. (4.12) 

The term .φ′ is called correction or error and is defined as the difference between the 

exact and the approximate value (the one obtained at the .n-th iteration) of . φ. From  

Eq. 4.12, it follows that 

. A
(
φn + φ′

)
= b.

Keeping Eq. 4.11 in mind, it will be 

. Aφ′ = Rn

known as the correction form of Eq. 4.1, from which it differs in that, at convergence, 

both terms on the left and on the right-hand side become zero. 

Once the residual is defined, its .L1 and .L2 norms can also be defined as 

. L1 norm : R1 =

N∑

k=1

|Rk |, L2 norm : R2 =

√√√√
N∑

k=1

(Rk)2.

The .L2 norm is also known as the Euclidean norm and is often calculated as 

.R2 =
√
RTR.
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4.5 Stopping Criteria 

In the case where an iterative method is used, it is necessary to define a criterion upon 

which to stop the iterative process. Many of these criteria are based on the concept 

of the residual. One such criterion is the one that stops the iterations if the maximum 

value of the residual falls below a certain threshold value, . ǫ. 

. 
N

max
i=1

∣∣∣∣∣∣
bi −

N∑

j=1

ai jφ
n
j

∣∣∣∣∣∣
� ǫ.

Another criterion requires that the mean squared error be less than a certain value, . ǫ. 

. 

∑N
i=1

(
bi −

∑N
j=1 ai jφ

n
j

)2

N
� ǫ.

A further criterion involves stopping the calculation if the normalised difference 

between two consecutive values falls below a certain threshold. 

. 
N

max
i=1

∣∣∣∣∣
φn

i − φn−1
i

φn
i

∣∣∣∣∣× 100 � ǫ.

A final criterion involves stopping the calculation once the maximum number of 

iterations is reached. 

4.6 LU Factorisation Method 

Given a matrix .A ∈ R
N×N , and assuming that there exist a lower triangular matrix 

. L and an upper triangular matrix .U such that 

.A = LU, (4.13) 

Equation 4.13 is called the LU factorisation (or decomposition). In particular, it will 

be 

.U =

⎡
⎢⎢⎢⎣

u11 u12 . . . u1N−1 u1N

0 u22 . . . u2N−1 u2N

...
... . . .

...
...

0 0 . . . 0 aN N

⎤
⎥⎥⎥⎦ and L =

⎡
⎢⎢⎢⎣

1 0 . . . 0 0

l21 1 . . . 0 0
...

... . . .
...

...

lN1 lN2 . . . lN N−1 1

⎤
⎥⎥⎥⎦
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The elements of the main diagonal of the matrix .L are set equal to 1 to make the 

factorisation unique. Solving the matrix equation .Ax = b is equivalent to solving 

the two simpler triangular systems 

. Ly = b and Ux = y.

Since . L is lower triangular, the first row of the system .Ly = b will have the form 

.l11y1 = b1, from which we derive the value of .y1 assuming .l11 �= 0. Substituting the 

value found for .y1 into the subsequent .N − 1 equations, we obtain a system whose 

unknowns are.y2, . . . , yN , for which we can proceed in the same manner. Proceeding 

forward, equation by equation, we calculate all the unknowns using the following 

algorithm, called forward substitution. In a completely analogous manner, the system 

.Ux = y can be solved: in this case, the first unknown to be calculated will be .xN , 

and then, in reverse, all the remaining unknowns .xi for . i ranging from .N − 1 to 1. 

Given a matrix .A ∈ R
n×n , its LU factorisation exists and is unique if and only if 

the principal submatrices .Ai of . A of order .i = 1, . . . , N − 1 (i.e., those obtained by 

limiting. A to the first. i rows and columns) are non-singular. Some classes of matrices 

satisfy the condition just stated, and among these, the following can be mentioned: 

• strictly diagonally dominant matrices: For simplicity, we recall here that a matrix 

is said to be row diagonally dominant if 

. |ai i | �

N∑

j=1, j �=i

|ai j | i = 1, . . . , N .

It is said to be column diagonally dominant if 

. |ai i | �

N∑

j=1, j �=i

|a j i | i = 1, . . . , N

f the sign . > can replace the sign . �, there will be strict diagonal dominance (for 

rows or columns, respectively). 

Real symmetric and positive definite matrices. A matrix is said to be positive 

definite if 

. ∀x ∈ ℜN with x �= 0, xT Ax > 0;

a matrix is said to be  semi positive defined if 

. ∀x ∈ ℜN with x �= 0, xT Ax � 0.

If .A ∈ R
N×N is symmetric and positive definite, there exists a special factorisation 

called the Cholesky factorisation, expressed by 

.A = RT R
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where .R is an upper triangular matrix, obtained using a suitable algorithm, with 

positive elements on the main diagonal. The Cholesky factorisation generates the 

filling of the band, a phenomenon called fill-in, whereby the factorisation process 

tends to fill the .L and .U matrices, modifying the structure of the corresponding 

triangle of the initial .A matrix. For example, if the .A matrix is coarse, the .L and 

.U matrices may have non-zero elements where in the .A matrix they were null. A 

square matrix of size .N is called coarse if it has a number of non-null elements of 

the order of . N . Furthermore, the pattern of a coarse matrix is the set of its non-null 

elements. To overcome the fill-in of a matrix, reordering techniques can be adopted, 

which permute rows and columns of the matrix before performing the factorisation. 

4.6.1 Preconditioning 

Given a symmetric and positive-definite linear system .Aφ = b, preconditioning the 

system means conditioning the matrix of coefficients before applying any iterative 

method; conditioning the matrix aims to improve its condition number. The condition 

number of a symmetric matrix is defined as: 

. K (A) =
λM

λm

where.λM is the maximum eigenvalue and.λm is the minimum eigenvalue of the matrix 

. A. To be  well-conditioned, a matrix must have a condition number .K (A) ≈ 1. The  

larger the condition number of . A, the slower the convergence will be. The precondi-

tioning technique is used to improve this number, and therefore the robustness and 

computational efficiency of the iterative methods used to solve the linear system. 

In practice, preconditioning consists of defining a matrix .M of the same dimen-

sions as . A, called the preconditioning matrix or preconditioner, with the following 

characteristics: 

• non-singular, i.e., invertible; 

• symmetric, that is, .MT = M; 

• positive-definite. 

and transform the previous system into the equivalent preconditioned system: 

. M−1Aφ = M−1b

which can be solved faster than the initial one, provided that .K
(
M−1A

)
≪ K (A). 

An example is the diagonal or Jacobi preconditioner, in which the matrix .M is 

constructed from the matrix . A, considering only the elements of the main diagonal: 

.M = diag(A).
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In this case, the preconditioner performs a simple ‘scaling’ of the initial matrix . A. In  

the case where . A is also coarse, in addition to being symmetric and positive-definite, 

the preconditioning matrix can be constructed through an incomplete Cholesky fac-

torisation of the matrix . A. This is referred to as ILU decomposition (Incomplete 

Lower-Upper) of a symmetric matrix. With this strategy, a lower triangular matrix 

.RP is constructed. .RP approximates the factor .RT of the Cholesky factorisation. 

. M = RPR
T
P .

A widely used technique to construct .RP is known as ICT (Incomplete Cholesky 

with Threshold Dropping). To implement it, the following steps are performed: 

1. choose a drop tolerance .ǫd > 0; 

2. perform the Cholesky factorisation algorithm (appropriately modified to generate 

a lower triangular matrix) to construct the elements of .RP . Off-diagonal elements 

that are less than .c jǫd are ignored (.c j is the norm of the . j-th column vector of the 

lower triangle of . A). 

The nofill technique, on the other hand, ignores all elements of .RP where the cor-

responding positions in . A contain null elements. In fact, it is a factorisation without 

fill-in. This is referred to as ILU(0) decomposition. A simplified version of the ILU 

decomposition is known as diagonal ILU (DILU), in which only the elements of the 

main diagonal are modified. 

4.6.2 The Gradient and Conjugate Gradient Methods 

Given the square linear system .Ax = b of dimension . N , it is possible to define the 

function . � : R
N → R

. �(x) =
1

2
xTAxxTb.

If . A is symmetric and positive definite, .� is a convex function, i.e., .∀ x, y ∈ R
N . If  

.� is convex, then .∀α ∈ [0, 1], it holds 

. �(αx + (1 − α) y) � α�(x) + (1 − α)�(y)

and. � admits a unique stationary point,. x∗, which is also a point of local and absolute 

minimum. From this, it follows that 

.x∗ = argmin
x∈ℜN

�(x) (4.14) 

is the only solution of the equation 

.∇�(x) = Ax − b = 0.
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Solving the minimum problem (4.14) is equivalent to solving the linear least squares 

system .Ax = b of dimension . N , in which .A is symmetric and positive definite. 

Starting from a generic point.x(0) ∈ R
N , the gradient and conjugate gradient methods 

construct a sequence of vectors .x(k) converging to . x∗, exploiting the information 

provided by the gradient vector of . �. In fact, for a generic .x ∈ R
N different from 

. x∗, .∇�(x) is a non-zero vector in .RN that identifies the direction along which the 

maximum growth of .� occurs. Consequently, .−∇�(x) identifies the direction of 

maximum decrease of .� starting from . x. Recall that the residual vector at the point 

. x is defined as .r = b − Ax. It can be written 

. r = −∇�(x)

From this, it is noted that the residual identifies a possible direction in which to 

move in order to approach the minimum point . x∗. More generally, if the following 

conditions are met 

. 

{
dT ∇�(x) < 0 i f ∇�(x) �= 0,

d = 0 i f ∇�(x) = 0,

the vector . d represents a direction of descent for .� at the point . x. 

The descent methods are thus defined: 

given a vector .x(0) ∈ ℜN , 

• a direction of descent .d(k) ∈ ℜN is determined; 

• a step .αk ∈ ℜ is determined; 

• the update rule is set as .x(k+1) = x(k) + αkd
(k). 

for .k = 0, 1, . . . until convergence. 

The gradient and conjugate gradient methods are both descent methods, differing 

in the choice of descent directions. The determination of the steps .αk is common to 

both methods and is performed using the following formula: 

.αk =

(
d(k)
)T

r(k)

(
d(k)
)T

Ad(k)
. (4.15) 

The gradient method is characterised by the choice 

. d(k) = r(k) = −∇�(x(k)), k = 0, 1, . . .

That is, the direction of descent at each step is opposite to the direction of the 

gradient of the function .� (hence the name of the method). The conjugate gradient 

method constructs a system of descent directions .d(k)N−1

k=0 in .R
N that are all linearly 

independent and therefore constitute a basis for.RN . Moreover, the descent directions 

are such that the values .αk
N−1
k=0 , calculated with the formula (4.15), are precisely the 

coefficients of the decomposition of .
(
x∗ − x(0)

)
with respect to the basis .d(k)N−1

k=0 .
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This implies that the term .x(N ) obtained at the N-th iteration coincides with the exact 

solution . x∗. 

4.7 Multigrid Methods 

A multigrid algorithm improves the performance of an iterative method for solving 

systems of equations by using a hierarchy of grids generated from an initial grid. 

4.7.1 The Smoothing Property of Iterative Methods 

Many iterative schemes used to solve a linear system obtained by appropriately dis-

cretising a generic PDE have the property of eliminating, in a few iterations, the 

high-frequency errors, while leaving the low-frequency errors almost unchanged. 

The system .Aφ = 0, obtained by discretising the one-dimensional problem, is 

considered. 

. 

{
φ′′ = 0 with x ∈ (0, 1)

φ(0) = φ(1) = 0.

Defined the error as the difference between the exact and approximate values. For 

this problem, the exact solution is .φ = 0, therefore, given an approximate solution 

. v, the error is trivially .−v. As the initial solution, the vector .vk can be considered, 

defined as 

. vk
j = sin

(
jkπ

n

)
.

In this context, the index . j represents the . j-th component of the vector . v, while 

. k is called the wave number or frequency of the signal. A signal is defined as low 

frequency, or  smooth, if  .1 � k < n
2
, where . n is the number of discretisation inter-

vals. A signal is defined as high frequency if . n
2

� k < n. Taking, for example, four 

initial vectors with .k = 1, 6, 16, 32, the trend of the norm of the error is shown in 

Fig. 4.6. It is observed that the error decreases with each iteration regardless of the 

initial data, but the rate at which it decreases is very different: it is higher in the 

case of .k = 32, or for high-frequency signals. This simple example shows that the 

high-frequency components of the error are significantly reduced in a few itera-

tions, while the low-frequency components require a greater number of iterations. 

In the case where .v = v1 + v6 + v16 + v32, the method manages to eliminate the 

low-frequency component of the error, and therefore, in Fig. 4.7, it is observed that, 

in the first iterations, the error decreases considerably and then stabilises. This prop-

erty of eliminating the high frequencies of the error (smoothing) is characteristic of 

many iterative algorithms (Jacobi, Gauss-Seidel, red-block Gauss-Seidel, etc.) and
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Fig. 4.6 Error as a function 

of the number of iterations 

for the system .Aφ = 0, 

using 4 vectors initial at 

different frequency 

Fig. 4.7 Error trend for the 

system .Aφ = 0, using the 

initial vector . v = v1 + v6 +

v16 + v32

represents the starting point for multigrid methods. From the definition of high/low-

frequency signals, it is understood that as the number of discretisation intervals . n

varies, the same signal, identified by the wave number . k, can be considered high or 

low frequency: specifically, a low-frequency signal for a high number of intervals 

becomes high frequency for a low number of intervals. 

4.7.2 Geometric Multigrid 

To better understand this method, also known as FAS (Full-Approximation Storage) 

multigrid, initially consider the case where only two grids are used: a coarse one 

and a fine one. The example referred to is that of the Poisson equation solved on a 

two-dimensional rectangular domain with a structured grid and Dirichlet boundary 

conditions on all boundaries. It is important to keep in mind that the accuracy of the 

final solution must still be that of the fine grid. This method is implemented in an 

algorithm consisting of various steps, a brief description of which is given below. 

4.7.2.1 Generation of Grids (Agglomeration) 

Starting from the fine grid with which the computational domain has been discretised, 

the first step consists of generating the coarse grid. As shown in Fig. 4.8, each node
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of the coarse grid will share its position with a node of the fine grid. Indicating by 

.(I, J ) the identifying indices of the coarse grid and by .(i, j) the indices of the fine 

grid, we can write with reference to Fig. 4.8: 

. (i, j) = (2I − 1, 2J − 1).

Being .NF and .NC the total number of points for the fine grid and the coarse grid, 

respectively, along the direction .I/ i , and .MF and .MC the total number of points for 

the fine grid and the coarse grid, respectively, along the direction .J/j , it will be 

. NF = 2NC − 1, MF = 2MC − 1.

As an example, from a fine grid of dimensions .21 × 21 we would obtain a coarse 

grid of dimensions .11 × 11. 

4.7.2.2 Initialisation 

In this phase, the initial value .φ
F(0)
i, j of the dependent variable at each point of the 

fine grid is set. 

4.7.2.3 Smoothing on the Fine Grid 

In this phase, the system of equations .AFφF = bF , resulting from the application 

of the Poisson equation to each cell of the fine grid, is solved. Keeping in mind 

what was discussed in Sect. 4.7.1 and with the aim of eliminating only the high-

frequency components of the error, only a reduced number of iterations is performed 

to solve this system (smoothing). The iterative method chosen—also called the solver 

or smoother—to solve this system must be selected from those computationally 

less expensive, as the reduction of errors in the multigrid method is mainly due 

Fig. 4.8 Generation of the 

coarse grid (continuous line 

circles) from the fine grid. 

Grey circle: point of the fine 

grid positioned on a line of 

coarse grid. Dashed circle: 

point of the fine grid not 

positioned on a line of coarse 

grid 

I/i 

J/j
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to the use of grids with different levels of cell density. The Gauss-Seidel solver 

is normally preferred over more complex solvers, such as those based on gradient 

analysis. The solution obtained in this phase is affected by an error characterised 

by long wavelengths for the fine grid, as the shorter wavelength components of the 

error have been eliminated by the smoothing process. The subsequent steps of the 

multigrid method aim to transfer this error to the coarse grid. 

4.7.2.4 Calculation of the Residual on the Fine Grid 

Here, the residual on the fine grid is calculated as 

. RF = bF − AFφF

and then its L2 norm as 

. R2F =

√
RT

FRF .

4.7.2.5 Transfer of the Fine Grid Residuals to the Coarse Grid 

(Restriction) 

This phase, known as restriction, ensures that the residuals of the nodes of the fine 

grid that have a counterpart in the coarse grid are copied onto the same nodes of the 

coarse grid. These residuals will be indicated with the symbol .RC←F . In the event 

that there is no correspondence between the nodes of the fine grid and the coarse 

grid, it will be necessary to use an interpolation method. Note that the component 

4.7.2.6 Smoothing on the Coarse Grid 

Considering the equation in correction form for the coarse grid 

. ACφ′
C = RC←F

a reduced number of iterations is performed to solve this system with the aim of 

eliminating only the high-frequency components (for the coarse grid) of the correc-

tion .φ′
C . Here too, as done for smoothing on the fine grid, the method to solve this 

system is chosen from those computationally less expensive.
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4.7.2.7 Transfer of the Correction for the Coarse Grid to the Fine Grid 

(Prolongation) 

The correction .φ′
C for the coarse grid, obtained at the end of the smoothing phase on 

the coarse grid, is transferred to the fine grid with a process known as prolongation. 

The prolongation phase involves the use of interpolation, as there are points on the 

fine grid that are not present on the coarse grid. In this regard, and with reference to 

Fig. 4.8, three different cases can occur. 

1. The point of the fine grid coincides with the point of the coarse grid: in this case, 

interpolation is not necessary; 

2. the point of the fine grid is positioned on a grid line of the coarse grid: in this case, 

interpolation between the two points of the coarse grid adjacent to the considered 

fine grid point can be performed; 

3. the point of the fine grid is not positioned on a grid line of the coarse grid: in this 

case, interpolation must be performed considering the four points of the coarse 

grid adjacent to the considered fine grid point. 

The symbol .φ′F←C will denote the correction on the fine grid obtained from the 

correction on the coarse grid. 

4.7.2.8 Updating the Solution on the Fine Grid 

In this phase, the initial solution previously obtained for the fine grid is updated by 

considering the correction obtained from the coarse grid: 

. φF = φF + φ′F←C .

4.7.2.9 Checking the Level of Convergence 

The L2 norm of the residual, calculated after the smoothing phase on the fine grid, 

is compared with the threshold value .ǫtol , which is defined to determine whether 

the solution obtained is acceptable. This value of the residual, rather than the one 

corresponding to the last update of the solution for the fine grid, is used to avoid 

calculating the residual twice in the same multigrid cycle. If the convergence criterion 

(.R2F < ǫtol ) is not met, the process is repeated, starting from the smoothing phase 

on the fine grid. 

4.7.3 V-Cycle 

In general, the multigrid algorithm involves the use of more than two grids. Specifi-

cally, we refer to a hierarchy of grids to denote the set of grids employed, each with a
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different level of refinement. To better understand the use of the multigrid algorithm 

with multiple grids, we will now consider the algorithm known as V-cycle multi-

grid. Figure 4.9 shows a V-cycle multigrid with three grid levels. The shaded boxes 

represent the smoothing operation, the box with a thick continuous line represents 

the correction operation, and the dashed box represents the operation of updating 

the correction and the final solution. The arrows pointing down represent the restric-

tion operation, while the arrows pointing up represent the prolongation operation. 

Through the restriction operation, the residual obtained from the partial solution of 

the original system is transferred to the intermediate grid. At this point, the equa-

tion in correction form, .A2φ
′
2 = R2←1, for the intermediate grid is partially solved, 

and then the corresponding residual .R2 = R2←1 − A2φ
′
2 is calculated. The residual 

corresponding to the intermediate grid is then transferred to the coarse grid. In the 

ideal case, the coarse grid allows for a direct solution from the corresponding system 

resulting from the application of the equation in correction form, .A3φ
′
3 = R3←2. 

In practice, a direct solution of this system is not possible, so we proceed with a 

partial solution using an iterative method, typically the one used for the smoothing 

phase performed in the previous steps. Subsequently, the coarse grid correction is 

transferred to the intermediate grid. The intermediate grid correction is calculated as 

.φ′
2 = φ′

2 + φ′
2←3. The transfer to the fine grid and the calculation of the correspond-

ing correction is done via .φ′
1 = φ′

1 + φ′
1←1. The process ends with the updating of 

the solution on the fine grid. The total number of grids used is determined by the 

computational costs associated with interpolation operations and data storage for 

each grid level. In addition to the V-cycle algorithm, the W-cycle and full multigrid 

algorithms are also widely used. These are based on the principles outlined here and 

will not be discussed further. 

4.7.4 Algebraic Multigrid 

As seen earlier, one of the factors that most influences the efficiency of the itera-

tive process for solving systems of equations is a coefficient matrix characterised 

by elements whose ratio between the maximum and minimum value is very high. 

In this case, we speak of anisotropy of the coefficients, which, in some cases, can 

lead to poorly conditioned matrices. Keeping in mind what was discussed in Chap. 3 

and referring to Eq. 4.7, the dependence of the value of the coefficients on the geo-

metric characteristics of the cells is evident. In the case of rectangular cells with 

high ratios between the lengths of the two sides, an anisotropic matrix of coeffi-

cients is obtained. The solution would advance at different speeds depending on the 

considered direction, slowing down the entire resolution process. The presence of 

physical phenomena with direction-dependent characteristics also contributes to the 

anisotropy of the coefficient matrix, even in the presence of a regular computational 

grid. 

Stating the dependence of the coefficient matrix on the geometry of the grid, it is 

clear that, for geometric multigrid, the grid geometry determines the agglomeration
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Fig. 4.9 V-cycle multigrid 

with three grid levels 

process. Conversely, in algebraic multigrid, the values of the elements of the fine grid 

coefficient matrix are used to construct a coarse grid whose coefficient matrix has 

better isotropy characteristics. In algebraic multigrid, both the influence of geometry 

and physical phenomena on the isotropy of the coefficient matrix are taken into 

account, leading to a general improvement in the resolution process. In algebraic 

multigrid, the basic strategy of the geometric multigrid method is maintained, as 

grids with different levels of refinement continue to be considered. Specifically, the 

transition from fine grids to coarse grids involves the phases of restriction, setting 

up/updating the system of equations for the coarser grid, and smoothing on the 

coarser grid. The transition from coarse grids to fine grids involves the phases of 

prolongation, correction of the solution on the finer grid, and smoothing on the finer 

grid. 

4.7.4.1 Generation of Grids (Agglomeration/Coarsening) 

Various approaches are possible for the creation of grids at different levels of refine-

ment that will be used in the multigrid procedure. For example, one can start from a
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coarse grid and then gradually refine it. This approach implies an excessive depen-

dence of the finer grid on the starting coarse grid. In general, it is therefore preferred 

to start from the finer grid in order to obtain the coarser grid through the union 

(agglomeration) of cells of the fine grid. The agglomeration process can be based on 

both geometric criteria and criteria related to the values assumed by the coefficients 

of the algebraic equations in the various cells of the fine grid. Note: what is referred 

to in OpenFOAM® when discussing Geometric-Algebraic Multi-Grid (GAMG) is 

a solver for linear systems of the algebraic multi-grid type, with an agglomeration 

process that, depending on the settings, can be based on both geometric criteria and 

the values of the elements of the coefficients matrix. 

4.7.4.2 Initialisation and Smoothing on the Fine Grid 

Once an initial value for the unknown in each cell of the computational domain is set, 

and using the chosen solver as an iterative method for the solution of linear systems, 

a limited number of iterations is performed to obtain a first approximate solution on 

the fine grid. Based on this approximate solution, the vector consisting of the values 

of the residual in each of the cells of the computational domain is calculated. 

4.7.4.3 Calculation of Residuals on the Fine Grid 

The general linear conservation equation for the cell centred at C can be written in 

the form 

.aCφC +
∑

F=N B(C)

aFφF = bC (4.16) 

where .N B(C) is the number of faces that bounds the cell. Applying Eq. 4.16 to all 

the cells of the computational domain, the system .Aφ = b is obtained. For each cell, 

it can be written 

. aiφi +
∑

j=N B(i)

ai jφ j = bi

and, using the index . k to refer to the fine grid, 

. a
(k)

i φ
(k)

i +
∑

j=N B(i)

a
(k)

i j φ
(k)

j = b
(k)

i .

By definition, the residual on the generic cell . i of the fine grid will be 

.r
(k)

i = b
(k)

i −

⎛
⎝a

(k)

i φ
(k)

i +
∑

j=N B(i)

a
(k)

i j φ
(k)

j

⎞
⎠ .
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Recalling the definition described in Sect. 4.4, the same residual can be written in 

terms of correction . φ′: 

. r̃
(k)

i = b
(k)

i −

⎡
⎣a

(k)

i

(
φ

(k)

i + φ
′(k)

i

)
+

∑

j=N B(i)

a
(k)

i j

(
φ

(k)

j + φ
′(k)

j

)
⎤
⎦

that is 

.r̃
(k)

i = r
(k)

i −

⎛
⎝a

(k)

i φ
′(k)

i +
∑

j=N B(i)

a
(k)

i j φ
′(k)

j

⎞
⎠ . (4.17) 

4.7.4.4 Transfer of Residuals and Coefficients from the Fine Grid to the 

Coarse Grid (Restriction) 

Using the index .k + 1 to refer to the coarse grid, the residuals on the coarse grid can 

be calculated in terms of the residuals on the fine grid as 

. rk+1 = Ik+1
k rk

where .Ik+1
k is the restriction operator in the transition from the fine grid to the coarse 

grid resulting from the process of agglomeration. In algebraic multigrid, this operator 

(the interpolation matrix) is defined in order to obtain 

. r k+1
I =

∑

i∈I

r k
i

where the subscript . i refers to the cells of the grid at level . k (the fine grid) which, in 

the agglomeration process, have been grouped to form the cell . I of the .k + 1 level 

grid (the coarse grid). 

The coefficients of the coarse grid are calculated from those of the fine grid using 

the following relationships: 

. ak+1
I =

∑

i∈I

ak
i +

∑

i∈I

∑

j∈I

ak
i j , ak+1

I J =
∑

i∈I

∑

j /∈I
j∈N B(I )

ak
i j .

4.7.4.5 Smoothing on the Coarse Grid 

Imposing that for each cell . I of the coarse grid the residual value is zero is equivalent 

to requiring that 

.

∑

i∈I

r̃
(k)

i = 0



4.7 Multigrid Methods 149

which, as referred to in Eq. 4.17, becomes 

.0 =
∑

i∈I

r
(k)

i −

⎛
⎝∑

i∈I

a
(k)

i φ
′(k)

i +
∑

i∈I

∑

j=N B(i)

a
(k)

i j φ
′(k)

j

⎞
⎠ (4.18) 

which is the correction form of the equation for the coarse grid, written according to 

the numbering of the fine grid. Using the numbering of the coarse grid, Eq. 4.18 can 

be rewritten as 

.ak+1
I φ

′(k+1)
I +

∑

J=N B(I )

a
(k+1)
I J φ

′(k+1)
J = r k+1

I . (4.19) 

A reduced number of iterations of the chosen linear system solution algorithm is exe-

cuted on the system resulting from the application of the correction form of Eq. 4.19 

to each cell of the coarse grid. This results in the value .φ′(k+1) of the correction 

on the coarse grid. 

4.7.4.6 Transfer of the Correction for the Coarse Grid to the Fine Grid 

(Prolongation) 

This phase can be implemented according to different approaches. One possibility 

is to set the correction value for all the cells . i of the fine grid, which together form 

the cell . I , equal to the value obtained for the cell . I of the coarse grid. 

4.7.4.7 Smoothing of the Correction for the Fine Grid 

In the case where the fine grid used is not the starting fine grid, a reduced number of 

iterations of the chosen linear system solution algorithm is executed on the system 

resulting from the application of the correction form of Eq. 4.19 to each cell of the 

fine grid. This results in an updated value .φ′(k+1) of the correction on the fine grid. 

4.7.4.8 Updating the Solution on the Fine Grid 

In this phase, the solution previously obtained on the fine grid is updated by consid-

ering the correction from the coarse grid. 

4.7.4.9 Checking the Level of Convergence 

If the convergence criterion (.R2F < ǫtol) is not reached, the process is repeated, 

starting from the smoothing phase on the fine grid.
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4.7.5 Application Example 

As an application example, a stationary diffusion problem is considered in a ther-

mally insulated metal bar of length .L = 1m, with a constant cross-sectional area 

of .A = 0.1m2, with its ends kept at constant temperatures of .100 ◦C and .500 ◦C, 

respectively. Inside the bar, heat is produced at a constant volumetric power density 

of .q = 2000 kW
m3 , and the material of the bar has a constant thermal conductivity of 

.k = 5 W
m K

. Assuming the coordinate . x is associated with the length of the bar, the 

equation that describes this phenomenon is 

.

d

dx

(
k

dT

dx

)
+ q = 0. (4.20) 

The equation that generally describes the stationary one-dimensional diffusion 

phenomenon of a quantity . φ is 

.

d

dx

(
Ŵ

dφ

dx

)
+ S = 0 (4.21) 

where . Ŵ is the diffusion coefficient and . S is the source term. Referring to Fig. 4.10, 

by integrating and discretising, it becomes 

. 

∫

�V

d

dx

(
Ŵ

dφ

dx

)
dV +

∫

�V

qdV =

(
ŴA

dφ

dx

)

e

−

(
ŴA

dφ

dx

)

w

+ S�V = 0

(4.22) 

where . S is the average value of the source term within the control volume .�V . 

Assuming a linear approximation to calculate the value of . Ŵ at the interfaces . e and 

. w, it becomes 

. Ŵw =
ŴW + ŴP

2
and Ŵe =

ŴP + ŴE

2
.

The diffusive flows are expressed as 

. 

(
ŴA

φ

dx

)

e

= Ŵe Ae

(
φE − φP

dxP E

)
and

(
ŴA

φ

dx

)

w

= Ŵw Aw

(
φP − φW

dxW P

)
.

To account for cases where the source term . S is a function of the dependent variable, 

it is expressed in linear form: 

. S�V = Su + SPφP .

It is now possible to rewrite Eq. 4.22 as 

.Ŵe Ae

(
φE − φP

dxP E

)
− Ŵw Aw

(
φP − φW

dxW P

)
+ (Su + SPφP)
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which, rearranged, becomes 

. 

(
ŴE

dxP E

Ae +
ŴW

dxW P

Aw − SP

)
φP =

(
Ŵw

dxW P

Aw

)
φW +

(
Ŵe

dxW P

Aw

)
φE + Su

or, in compact form, 

.aPφP = aW φW + aEφE + Su (4.23) 

having set 

. aW =

(
Ŵw

dxW P

Aw

)
, aE =

(
Ŵe

dxW P

Aw

)
, aP = aW + aE − SP .

The analysis of the one-dimensional computational domain, constituted by the thick-

ness of the bar, is now performed. Such a domain can be divided into intervals, each 

constituting the control volume in which the governing Eq. 4.20 is integrated. The 

integration of Eq. 4.20 over the control volume highlighted in Fig. 4.10 leads to the 

formulation. 

. 

∫

�V

d

dx

(
k

dT

dx

)
dV +

∫

�V

qdV =

[(
k A

dT

dx

)

e

−

(
k A

dT

dx

)

w

]
+ q�V = 0

(4.24) 

that is 

.

[
ke A

(
TE − TP

δx

)
− kw A

(
TP − TW

δx

)]
+ q Aδx = 0. (4.25) 

Setting .ke = kw = k and rearranging, we get 

. 

(
k A

δx
+

k A

δx

)
TP =

(
k A

δx

)
TW +

(
k A

δx

)
TE + q Aδx .

Using the compact notation (4.23), it is 

. aW =
k

δx
A, aE =

k

δx
A, aP = aW + aE − SP , SP = 0, Su = q Aδx .

The approach for boundary nodes 1 and 5 is slightly different. In the case of node 1, 

point P coincides with point 1, and the temperature on face. w—which coincides with 

point A—is known as it is prescribed by the boundary condition. The integration of 

Fig. 4.10 Discretisation of 

the computational domain
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the governing equation still leads to Eq. 4.24. Assuming a linear temperature trend 

between point A and point 1, for the control volume centred at point 1, Eq. 4.25 can 

be expressed as 

. 

[
ke A

(
TE − TP

δx

)
− kw A

(
TP − TA

δx/2

)]
+ q Aδx = 0.

Using the compact notation of Eq. 4.23, it is  

. aW = 0, aE =
k

δx
A, aP = aW + aE − SP , SP = −

2k

δx
A, Su = q Aδx +

2k

δx
A TA.

In the case of node 5, point P coincides with point 5, and the temperature on face . e— 

which coincides with point B—is known as it is prescribed by the boundary condition. 

The integration of the governing equation again leads to Eq. 4.24. Assuming a linear 

variation of the temperature between point 5 and point B, for the control volume 

centred at point 5, Eq. 4.25 can 

. 

[
ke A

(
TB − TP

δx/2

)
− kw A

(
TP − TW

δx

)]
+ q Aδx = 0.

Using the compact notation of Eq. 4.23, one obtains 

. aW =
k

δx
A, aE = 0, aP = aW + aE − SP , SP = −

2k

δx
A, Su = q Aδx +

2k

δx
A TB .

Table 4.1 summarises the expressions derived so far for the coefficients .aW , .aE , . Su , 

.SP , and .aP as functions of the considered node. 

Given these premises and assuming the entire length of the bar is discretised into 

20 intervals, we obtain .δx = 0.05m, while the values of the coefficients .aW , .aE , . Su , 

.SP , and .aP are those shown in Table 4.2. 

Table 4.1 Summary table of coefficients 

Node .aW .aE .Su .SP . aP

First node 0 .
k A

δx
.q Aδx +

2k

δx
A TA .−

2k

δx
A . aW + aE − SP

Non-border nodes .
k A

δx
.
k A

δx
.q Aδx .0 . aW + aE − SP

Last node .
k A

δx
.0 .q Aδx +

2k

δx
A TB .−

2k

δx
A .aW + aE − SP
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Table 4.2 Numerical value of the coefficients .aW , .aE , .Su , .SP and . aP

Node .aW .aE .Su .SP . aP

1 0 1 210 .−2 3 

2, …,19 1 1 10 .0 2 

20 1 .0 1010 .−2 3 

By constructing the matrix equation resulting from the application of the 

conservation equation, integrated over each of the 20 control volumes, one obtains 

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 . . . . . . . . . 0

−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
...

... . . .
...

... . . . 0

. . . . . . . . . . . . −1 2 −1

0 0 . . . 0 . . . −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

210

10

10
...

10

1010

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.26) 

4.7.5.1 Iterations on the Fine Grid 

Once the matrix Eq. 4.26 is determined, representing the system of algebraic equa-

tions for the considered system, the multigrid algorithm calls for a limited number 

of iterations using any iterative method for solving linear systems. In the example 

considered here, after setting the initial guess solution as one assuming a constant 

temperature of .150 ◦C throughout the entire computational domain, five iterations 

of the Gauss-Seidel algorithm are performed. The obtained solution vector is 

. yh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

116.755

141.994

160.427
...

394.392

468.130

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The residual vector is defined as.r = b − Ay, where. b is the column matrix of known 

terms and . A is the matrix of coefficients. Referring to the case of the fine grid, this 

becomes .rh = bh − Ahyh , which numerically results in
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. rh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r h
1

r h
2

r h
3
...

r h
19

r h
20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

210

10

10
...

10

1010

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 0 . . . . . . . . . 0

−1 2 −1 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
...

... . . .
...

... . . . 0

. . . . . . . . . . . . −1 2 −1

0 0 . . . 0 . . . −1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.728

3.193

4.658
...

7.461

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.2 Transfer of Residuals and Coefficients from the Fine Grid to the 

Coarse Grid (Restriction) 

The multigrid algorithm involves the use of multiple grids, each with a different level 

of refinement. The simplest way to construct grids with a lower degree of refinement, 

starting from the initial grid, is to pair the cells of the initial grid, as shown in Fig. 4.11. 

In the present example, three grids will be used: 

• the finest initial grid, shown at the top in Fig. 4.11, has intervals of width.δx = 0.05. 

this grid will be associated with the superscript . h; 

• the intermediate grid, shown in the centre of Fig. 4.11, has intervals of width 

.δx = 0.1. this grid will be associated with the superscript .2h; 

• the coarsest grid, shown at the bottom of Fig. 4.11, has intervals of width.δx = 0.2. 

this grid will be associated with the superscript .4h. 

Note that the .2h grid has half the number of intervals compared to the . h grid, and 

the .4h grid has half the number of intervals compared to the .2h grid. Once the 

grids are defined, a residual vector must be associated with the two intermediate and 

coarse grids, starting from the residual vector initially calculated for the fine grid 

(restriction). Since each centre of an interval on the intermediate grid is equidistant 

from the two centres of the fine grid intervals from which it originated, the residual 

associated with each interval on the intermediate grid will be the average of the 

residuals associated with the pair of fine grid intervals from which the intermediate 

grid interval originated. The same procedure is applied to calculate the residuals for 

Fig. 4.11 Grids used in 

the example of the multigrid 

algorithm application
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the coarse grid, starting from those of the intermediate grid. The residuals associated 

with the intermediate grid will therefore be 

. r2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r2h
1

r2h
2

r2h
3
...

r2h
9

r2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.460

5.317

7.506
...

28.173

3.730

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Once the vector of residuals on the intermediate grid is determined, it is necessary 

to determine the coefficient matrix .A2h for the matrix equation .A2he2h = r2h , which 

the residual vector.r2h satisfies. In this example, this matrix is not calculated by inter-

polating the corresponding matrix from the fine grid but by reapplying the procedure 

shown in the Table 4.1 to the intermediate grid. The result is 

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.5 −0.5 0 . . . . . . . . . 0

−0.5 1 −0.5 0 . . . . . . 0

0 −1 2 −1 0 . . . 0
...

... . . .
...

... . . . 0

. . . . . . . . . . . . −0.5 1 −0.5

0 0 . . . 0 . . . −0.5 1.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.460

5.317

7.506
...

28.173

3.730

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.27) 

Even for the error vector on the intermediate grid, .e2h , the same system as in Eq. 4.27 

is solved using the Gauss-Seidel procedure. This time, more iterations are performed 

compared to the case of the fine grid, as there are fewer elements, and the compu-

tational cost of each iteration is reduced. After ten iterations, the following solution 

vector is obtained. 

. e2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

19.156

58.310

96.049
...

158.591

55.351

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Given that the system in Eq. 4.27 was solved using an iterative method, a residual 

can be defined as 

.̂r2h = r2h
initial − A2he2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.881

4.609

5.929
...

0.9192

0.000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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whose numerical values correspond to the values of .e2h after ten iterations. As done 

previously for the intermediate grid, these residuals can be interpolated and trans-

ferred onto the coarse grid to obtain the residual vector .r4h . Similarly, as done for 

the intermediate grid, it is possible to determine the matrix .A4h . The matrix .A4h is 

then used to solve the system .A4he4h = r4h using the same iterative method. After 

ten iterations, the vector .e4h will be 

. e4h =

⎡
⎢⎢⎢⎢⎣

e4h
1

e4h
2

e4h
3

e4h
4

e4h
5

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

23.408

55.831

63.731

47.205

16.348

⎤
⎥⎥⎥⎥⎦

.

4.7.5.3 Transfer of the Correction for the Coarse Grid to the 

Intermediate Grid (Prolongation) 

The errors calculated for the coarser grid in the previous phase must now be trans-

ferred to the finer grid. For this purpose, any interpolation method can be used. 

Therefore, using linear interpolation to transfer the errors from the coarser .4h grid 

to the intermediate .2h grid, it is 

. e′2h
1 = 0.75e′4h

1 ,

e′2h
2 = 0.75e′4h

1 + 0.25e′4h
2 ,

e′2h
2 = 0.25e′4h

1 + 0.75e′4h
2 .

For the first three points of the intermediate grid, the single quote mark has been used 

to distinguish these errors from those obtained for the same grid during the restriction 

phase. The error at the edges has also been considered null where the boundary 

condition is imposed. Therefore, considering the value of the sought quantity at 

those points as known, it is 

. e′2h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e′2h
1

e′2h
2

e′2h
3
...

e′2h
9

e′2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

17.556

31.514

47.726
...

24.062

12.261

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

It is now possible to compute the correct value of the error on the intermediate grid, 

considering that 

.e2h
corr = e2h + e′2h
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and therefore 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

36.713

89.725

143.775
...

182.654

67.612

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.4 Smoothing of the Correction for the Intermediate Grid 

It is useful to recall here that the Gauss-Seidel algorithm is the chosen method for 

solving systems of linear equations. Since the intermediate grid is not the initial fine 

grid, only two iterations of the Gauss-Seidel algorithm are applied to the system 

formed by the equation in correction form, .A2he2h = r2h . This results in an updated 

value for the correction on the intermediate grid: 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e2h
1

e2h
2

e2h
3
...

e2h
9

e2h
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

32.639

95.749

152.494
...

188.283

65.248

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.5 Transfer of the Correction for the Intermediate Grid to the Fine 

Grid (Prolongation) 

Similarly to the transfer of errors from the coarse grid to the intermediate grid, the 

errors just calculated for the intermediate grid are transferred to the fine grid, resulting 

in 

.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

eh
1

eh
2

eh
3
...

e19
h

eh
20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

24.479

48.416

79.971
...

96.007

48.936

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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4.7.5.6 Updating the Solution on the Fine Grid 

In this phase, the initial solution for the fine grid is updated by considering the 

correction obtained from the coarse grid: 

. ycorr = y + eh

which in this case becomes 

. yh =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1
y2
y3
...

y19
y20

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

116.755

141.994

160.427
...

394.392

468.130

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

24.479

48.416

79.971
...

96.007

48.936

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

141.235

190.411

240.399
...

490.399

517.067

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

4.7.5.7 Checking the Level of Convergence and Possible Repetition 

of the Cycle 

The phases of residual (restriction) and error (prolongation) transfer involve the 

application of interpolation at various levels, which can introduce numerical errors. 

In most practical cases, these errors prevent the solution obtained after a single 

multigrid cycle from being characterised by a residual value sufficient to consider 

the solution acceptable. For this reason, the entire multigrid cycle is repeated, using 

the final solution of the previous cycle as the initial solution, until the required level 

of convergence is reached.



Chapter 5 

Pressure-Velocity Coupling 

What has been illustrated so far about the finite volume method (see Chap. 3) assumed 

the velocity field as known. Some of the techniques for determining this field will 

be illustrated in this chapter. In this regard, it is useful to highlight that the link—the 

coupling—existing between pressure and velocity, together with the non-linearities 

resulting from the presence of advective terms, represents one of the major difficulties 

in solving the conservation equations of mass and momentum. As seen previously, 

the total number of equations to be solved depends both on the number of cells in 

the computational domain and on the conservation equations considered: for exam-

ple, in the case of two-dimensional laminar compressible flow, it will be necessary 

to consider the conservation equation of mass, the two components of momentum 

conservation, energy conservation, and the state equation—five equations for each 

cell. 

A first categorisation of the various approaches with which the finite volume 

method can be used is based on the way all these equations are grouped into linear 

systems to be solved. In the case where you want to solve a single system contain-

ing all the equations, we speak of the coupled or, more accurately, simultaneous 

approach. When solving separately and sequentially the systems resulting from the 

application of the various conservation equations, the approach is called segregated. 

In the segregated approach, it is said that each quantity “owns its own equation”, 

meaning that each single quantity is associated with the corresponding matrix con-

servation equation. Considering that, even in the segregated case, the equations are 

solved depending on each other, the term simultaneous may be clearer than coupled. 

Among the main advantages of the segregated approach is the reduced need for com-

puting resources in terms of memory occupied for the solution of linear systems that 

are characterised by smaller dimensions given the smaller number of unknowns; the 

greater difficulty associated with the segregated approach is manifested in the need to 

implement a specific coupling algorithm between pressure and velocity. Correspond-

ingly, the main advantage of the simultaneous approach is that the coupling between 

pressure and velocity is verified at the very moment in which all the equations are 
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solved in a single system: it is said in this case that no quantity “owns” its specific 

equation. 

In the case where the segregated approach is chosen to solve a flow in which the 

variations in density and temperature permit the use of the state equation to calculate 

pressure, each quantity has its own differential equation: density is obtained from the 

equation of conservation of mass, velocity from the conservation of momentum, and 

temperature from the energy equation. This approach is referred to as the compress-

ible formulation or, in some cases, the density-based formulation. High-speed gas 

flows necessitate the compressible formulation, where the simultaneous approach 

is preferred over the segregated one, as the latter is less efficient in cases involving 

strong density variations, such as those caused by shock waves. 

When pressure variations are negligible, density may vary solely due to temper-

ature changes. Although the flow remains strictly compressible, the state equation 

cannot be used to derive pressure as a function of density and temperature. Small 

errors in the density calculation through the equation of conservation of mass would 

result in significant errors in pressure computation via the state equation, potentially 

leading to unacceptable inaccuracies in the velocity field or, in extreme cases, the 

failure of the entire iterative process. Consequently, for flows with negligible pressure 

variations, an equation of state is employed in which density is a function of temper-

ature alone, which is determined using the equation of conservation of energy. In this 

case, the pressure evolution equation is no longer required, and a pressure field must 

be computed to determine a corresponding velocity field that satisfies the conserva-

tion of both momentum and mass. In other words, the fact that pressure is independent 

of density introduces significant challenges in handling pressure-velocity coupling. 

Both for constant-density flows and for flows where density is a function of tempera-

ture alone, the incompressible formulation is adopted, also referred to in some cases 

as the pressure-based formulation. Among the methods used to compute pressure in 

the incompressible formulation, the so-called projection methods involve solving a 

Poisson equation for pressure. One of the most well-known and widely used projec-

tion methods is the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

algorithm, which, for clarity of exposition, will be presented below in its application 

on staggered grids, as initially developed by Spalding and Patankar in 1972. 

5.1 The Staggered Grid 

Although not used in most cases of general interest, the analysis of this type of 

grid is useful for understanding numerous concepts at the base of modern pressure-

velocity coupling algorithms. Considering what has already been seen previously, the 

application of the finite volume method involves considering all quantities positioned 

in the cell centre. In Fig. 5.1, a pressure field is shown with a distribution of values. s 

that gives rise to the so-called “checkerboard problem”. Considering the momentum 

conservation Eq. 5.6 relative to the first component of velocity, it will be necessary to 

determine the pressure gradient .∂ p/∂x , considering the pressure values on the faces 

.w and . e. By using linear interpolation to obtain the values of .pw and . pe, we obtain
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. 

∂ p

∂x
=

pe − pw

δx
=

pE + pP

2
−

pP + pW

2
δx

=
pE − pW

2δx

where the equi-spacing of the computational grid has been considered. 

Similarly, considering the momentum conservation Eq. 5.7 for the second com-

ponent of velocity, we obtain 

. 

∂ p

∂y
=

pN − pS

2δy
.

In both cases, in determining the pressure gradient, the pressure value in the cell 

centre, . P , does not appear. Therefore, in the case of a checkerboard pressure distri-

bution, as shown in Fig. 5.1, the algorithm cannot account for the correct pressure 

distribution: in this specific case, the algorithm would perceive a uniform pressure 

field instead of a real pressure field with a checkerboard distribution. Obviously, 

an incorrect pressure field would lead, when used in the solution of the conserva-

tion equations of momentum, to incorrect velocity fields. A possible remedy for the 

checkerboard problem is to consider different control volumes (cells) for the various 

quantities involved. Specifically, it is possible to consider a control volume for scalar 

quantities (e.g. pressure) and a different control volume for each of the velocity com-

ponents considered-two in the two-dimensional case, three in the three-dimensional 

case. 

In order to simplify the understanding of this strategy, a uniform two-dimensional 

Cartesian grid is considered, where the indices . I and . J (uppercase indices) are used 

to indicate the centres of the cells for scalar quantities, and the indices . i and . j

(lowercase indices) are used to indicate the corresponding faces. The control volume 

used for the scalar physical quantities is the one shown in Fig. 5.2; the control volume 

used for the x-component of the velocity (. u) is the one shown in Fig. 5.3; the control 

volume used for the y-component of the velocity (. v) is the one shown in Fig. 5.4. 

Fig. 5.1 Checkerboard 

pressure field
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Fig. 5.2 Control volume 

used for scalars 

Fig. 5.3 Control volume 

used for the x-component of 

the velocity 

Fig. 5.4 Control volume 

used for the y-component of 

the velocity 

From Fig. 5.2, and more clearly from the following Figs. 5.3 and 5.4, it is evident 

how the centres of the faces can be identified using both uppercase and lowercase 

indices. The centre .i, J of face . i of the control volume in Fig. 5.2 is also the centre of 

the control volume used for the . u component of velocity in Fig. 5.3. The centre . I, j

of face . j of the control volume in Fig. 5.2 is also the centre of the control volume 

used for the .y-component of velocity in Fig. 5.4. In this case, the grids are called 

backward staggered velocity grid because the grids used for the two components 

of the velocity are shifted respectively towards the lower value of each of the two 

indices used to identify the centre of the scalar cell: the centre of the cell for the . u

component of velocity is placed between indices .I − 1 and . I ; the centre of the cell 

for the .y-component of velocity is placed between indices .J − 1 and . J , as shown  in  

Fig. 5.5.
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Fig. 5.5 Backward 

staggered grids for velocity 

I 

I + 1I 1
i + 1  

J + 1  

J 1 

j + 1  

i 

JJ 

j 

I 

5.2 Conservation of Momentum 

Having defined the new coordinate system, it is possible to write the discretised 

equation of conservation of momentum for each of the two velocity components 

with reference to the new staggered grids. Initially, considering the . u component of 

velocity, in Fig. 5.6, the cell used for writing the discretised momentum conservation 

equation is shown. In detail, Fig. 5.6 shows: 

• the cell whose centre is P with indices .(i, J ); 

• the centres .e, w, n, s—with indices respectively .(I, J ), .(I − 1, J ), .(i, j + 1), 

.(i, j)—of the faces that delimit the cell; 

• the centres .E,W, N , S—with indices respectively .(i + 1, J ), .(i − 1, J ), . (i, J +

1), .(i, J − 1)—of the cells adjacent to the considered cell. 

In Chap. 3, it was seen that it is possible to write, for each cell of the computational 

domain, the conservation equation of momentum for the component. u of the velocity 

in the following discretised form 

.aPuP =
∑

anbunb + Su (5.1) 

where the subscript .P indicates the value at the centre of the considered cell; the 

symbol .
∑

indicates the summation extended to the centres of all the cells that 

share a face with the considered cell (of centre . P); the subscript .nb indicates all the 

Fig. 5.6 Control volume 

used for the . u component of 

the velocity on backward 

staggered grid
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neighbouring cells that share a face with the considered cell (of centre . P). In the 

two-dimensional case, it will be 

.

∑

anbunb = aEuE + aWuW + aNuN + aSuS. (5.2) 

.Su is the constant term of the linearised form .Su + SPuP of the component . u of the 

source term .S�Vu (cf., Eq. 3.4) in which .�Vu is the volume (the surface in the two-

dimensional case) of the cell. By highlighting the contribution of the pressure from 

the source term and considering the cells shown in Fig. 5.6, Eq.  5.1 can be expressed 

as 

. ai,Jui,J =
∑

anbunb −
pI,J − pI−1,J

δxu
�Vu + S�Vu

or, equivalently 

.ai,Jui,J =
∑

anbunb +
(

pI−1,J − pI,J
)

Ai,J + bi,J . (5.3) 

Notice that: (1) the pressure term has been expressed through linear interpolation 

between the values at the faces of the control volume for the . u velocity component, 

(2) it was set that .bi,J = S�Vu , (3) .Ai,J is the surface (length in the two-dimensional 

case) of the faces .w and . e of the cell. Now, Eq. 5.2 can be written as 

.

∑

anbunb = ai+1,Jui+1,J + ai−1,Jui−1,J + ai,J+1ui,J+1 + ai,J−1ui,J−1. (5.4) 

The values of the coefficients .ai,J and .anb can be calculated using any of the dis-

cretisation schemes for convective-diffusive flows presented in Chap. 3. Using  the  

centred scheme, it will be 

. aE = De −
Fe

2
,

aW = Dw −
Fw

2
,

aN = Dn −
Fn

2
,

aS = Ds −
Fs

2
,

aP = aW + aE + aN + aS + (Fe − Fw + Fn − Fs)

where. F and.D are the convective and diffusive mass flows respectively that cross the 

faces . e, . w, . n, and . s. Regardless of the interpolation scheme applied, the coefficients 

. a will always be a combination of the fluxes .F and . D, and for this reason, their 

calculation is illustrated below for the cell used in the discretisation of the momentum 

conservation equation in its . u component. 
The convective fluxes are as follows:
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. Fw = (ρu)w =
Fi,J + Fi−1,J

2
=

1

2

[

ρI,J + ρI−1,J

2
ui,J +

ρI−1,J + ρI−2,J

2
ui−1,J

]

,

Fe = (ρu)e =
Fi+1,J + Fi,J

2
=

1

2

[

ρI+1,J + ρI,J

2
ui+1,J +

ρI,J + ρI−1,J

2
ui,J

]

,

Fn = (ρv)n =
FI, j+1 + FI−1, j+1

2
=

1

2

[

ρI,J+1 + ρI,J

2
vI, j+1 +

ρI−1,J+1 + ρI−1,J

2
vI−1, j+1

]

,

Fs = (ρv)s =
FI, j + FI−1, j

2
=

1

2

[

ρI,J + ρI,J−1

2
vI, j +

ρI−1,J + ρI−1,J−1

2
vI−1, j

]

.

The diffusive fluxes are: 

. Dw =
ŴI−1,J

xi − xi−1

,

De =
ŴI,J

xi+1 − xi
,

Dn =
ŴI−1,J+1 + ŴI,J+1 + ŴI−1,J + ŴI,J

4 (yJ − yJ−1)
,

Ds =
ŴI−1,J + ŴI,J + ŴI−1,J−1 + ŴI,J−1

4 (yJ+1 − yJ )
.

It can be noted that, when computing the flows, if a scalar value or a velocity compo-

nent is not available on the faces of the control volume, the calculation of an appro-

priate average between the values of the quantity at the closest points for which the 

quantity itself is known has been used. The values of the two components . u and . v

of the velocity used for the diffusive fluxes are those resulting from the initial con-

ditions, or, if it is not the first iteration, those resulting from the previous iteration 

of the solution algorithm: these must therefore be distinguished from the unknown 

values that appear in the discretised Eq. 5.3 and in Eq. 5.4. What has been done so far 

for the . u component of the velocity can be similarly reapplied to the . v component 

with reference to Fig. 5.7. 

The discretised form of the conservation equation of momentum for the . v

component of the velocity is 

Fig. 5.7 Control volume 

used for the . v component of 

the velocity on a backward 

staggered grid
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.aI, jvI, j =
∑

anbvnb +
(

pI,J−1 − pI,J
)

AI, j + bI, j . (5.5) 

The convective fluxes will be: 

. Fw = (ρu)w =
Fi,J + Fi,J−1

2
=

1

2

[

ρI,J + ρI−1,J

2
ui,J +

ρI−1,J−1 + ρI−1,J−1

2
ui,J−1

]

,

Fe = (ρu)e =
Fi+1,J + Fi+1,J−1

2
=

1

2

[

ρI+1,J + ρI,J

2
ui+1,J−1 +

ρI,J−1 + ρI+1,J−1

2
ui+1,J−1

]

,

Fn = (ρv)n =
FI, j + FI, j+1

2
=

1

2

[

ρI,J + ρI,J−1

2
vI, j +

ρI,J+1 + ρI,J

2
vI, j+1

]

,

Fs = (ρv)s =
FI, j−1 + FI, j

2
=

1

2

[

ρI,J−1 + ρI,J−2

2
vI, j−1 +

ρI,J + ρI,J−1

2
vI, j

]

.

The diffusive flows will be: 

. Dw =
ŴI−1,J−1 + ŴI,J−1 + ŴI−1,J + ŴI,J

4 (x I − yI−1)
,

De =
ŴI,J−1 + ŴI+1,J−1 + ŴI,J + ŴI+1,J

4 (x I+1 − x I )
,

Dn =
ŴI,J

y j+1 − y j
,

Ds =
ŴI,J−1

y j − y j−1

.

Also in this case, the values of the components. u and. v used to determine the convec-

tive flows are those resulting from the initial conditions or, if it is not the first iteration, 

those resulting from the previous iteration of the solution algorithm. These values 

must therefore be distinguished from those—unknown—appearing in the discretised 

Eq. 5.5. 

5.3 The SIMPLE Algorithm 

From the general transport equation it is possible to derive (see Sect. 2.9) the  

conservation equation of the momentum in the x direction 

.

∂

∂x
(ρuu) +

∂

∂y
(ρuv) =

∂

∂x

(

µ
∂u

∂x

)

+
∂

∂y

(

µ
∂u

∂y

)

−
∂ p

∂x
+ Su, (5.6)
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the conservation equation of momentum in the y direction 

.

∂

∂x
(ρuv) +

∂

∂y
(ρvv) =

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂y

(

µ
∂v

∂y

)

−
∂ p

∂y
+ Sv, (5.7) 

the continuity equation 

.

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (5.8) 

in the case of a two-dimensional laminar stationary flow of a Newtonian fluid. Note 

that in the two conservation equations of the momentum, the contribution of the 

pressure has been expressed as a source term to highlight its importance, which will 

be shown below. 

In Chap. 3, the finite volume method is illustrated for the solution of the general 

transport equation, always considering the velocity field of the fluid transporting 

a generic quantity . φ. This velocity field . u, with its three components .u, v, w, is  

governed by the three Eqs. 5.6, 5.7, 5.8 whose solution presents three main problems: 

• the convective terms contains non-linear quantities (e.g. .ρuu in Eq. 5.6); 

• each component of the velocity is linked to the others because in each equation all 

the three components of the velocity appear; 

• for the generic control volume, it is not possible to write a transport equation for 

the pressure. The pressure appears in the two momentum conservation equations 

but not in the continuity equation. 

Regarding the pressure, in the case of compressible flows the continuity equation can 

be used as a transport equation for density and, in addition to Eqs. 5.6 and 5.7, the  

conservation equation of energy can be used as a transport equation for temperature. 

Finally, the pressure can be obtained from the equation of state, given the density 

and temperature. 

In the case of incompressible flows, being constant, the density is not linked 

to the pressure. The pressure value, if exact, leads to, with the two equations of 

momentum, a velocity field also satisfying the continuity equation. Specifically, to 

solve the conservation equation of momentum in the two-dimensional case, there are 

three unknowns (the two components of the velocity and the pressure) against only 

two transport equations (one momentum equation for each of the two components 

of the velocity). The use of the continuity equation is difficult in this case because, 

as seen, it does not contain the pressure term. The SIMPLE algorithm is one of the 

techniques used to solve this problem, which is better known as the pressure-velocity 

coupling problem. 

Before showing the details of this algorithm, it is worth noting that, given the 

exact pressure field . p, it is possible to solve the conservation equation of momentum 

for each of the two (in the two-dimensional case) components of the velocity; the 

velocity field obtained will satisfy both the conservation of momentum equation and 

the continuity equation.
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The SIMPLE algorithm will be illustrated for a two-dimensional laminar station-

ary flow. The iterative process begins with the imposition of a pressure field .p∗ as 

a first guess and the subsequent solution of the discretised momentum conservation 

equation for each of the two components of velocity: 

. ai,Ju
∗
i,J =

∑

anbu
∗
nb +

(

p∗
I−1,J − p∗

I,J

)

Ai,J + bi,J ,

aI, jv
∗
I, j =

∑

anbv
∗
nb +

(

p∗
I,J−1 − p∗

I,J

)

AI, j + bI, j .

At this stage, the .p′ field for pressure correction is defined as the difference between 

the exact . p and the initially imposed .p∗ pressure field: 

.p′ = p − p∗. (5.9) 

Similarly, a correction field can be defined for both components of the velocity: 

.u = u∗ + u′, (5.10) 

.v = v∗ + v′. (5.11) 

Moreover, the discretised equation of conservation of momentum, when applied to 

the exact pressure field . p, will yield a velocity field that satisfies the continuity 

equation. By subtracting the discretised equation of momentum for the pressure field 

.p∗ from that for the exact pressure field . p, the following two equations are obtained, 

one for each component: 

. ai,J
(

ui,J − u∗
i,J

)

=
∑

anb
(

unb − u∗
nb

)

+
[(

pI−1,J − p∗
I−1,J

)

−
(

pI,J − p∗
I,J

)]

Ai,J ,

aI, j

(

vI, j − v∗
I, j

)

=
∑

anb
(

vnb − v∗
nb

)

+
[(

pI,J−1 − p∗
I,J−1

)

−
(

pI,J − p∗
I,J

)]

AI, j .

Furthermore, using the correction formulas (5.9), (5.10), and (5.11), it becomes 

. ai,Ju
′
i,J =

∑

anbu
′
nb +

(

p′
I−1,J − p′

I,J

)

Ai,J ,

aI, jv
′
I, j =

∑

anbv
′
nb +

(

p′
I,J−1 − p′

I,J

)

AI, j .

At this stage, the greatest approximation is introduced by the SIMPLE algorithm. 

The terms .
∑

anbu
′
nb and .

∑

anbv
′
nb are disregarded in order to obtain 

.u′
i,J =

(

p′
I−1,J − p′

I,J

) Ai,J

ai,J
=

(

p′
I−1,J − p′

I,J

)

di,J ,

v′
I, j =

(

p′
I,J−1 − p′

I,J

) AI, j

aI, j
=

(

p′
I,J−1 − p′

I,J

)

dI, j .
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Specifically, the value of the corrections to be inserted in Eqs. 5.10 and 5.11 to obtain 

velocity values that will no longer be the exact ones, even though these approximated 

values will be treated as exact during this phase to facilitate comprehension. In 

summary, 

.ui,J = u∗
i,J +

(

p′
I−1,J − p′

I,J

)

di,J , (5.12) 

.vI, j = v∗
I, j +

(

p′
I,J−1 − p′

I,J

)

dI, j (5.13) 

and, similarly 

.ui+1,J = u∗
i+1,J +

(

p′
I,J − p′

I+1,J

)

di+1,J wi th di+1,J =
Ai+1,J

ai+1,J

, (5.14) 

.vI, j+1 = v∗
I, j+1 +

(

p′
I,J − p′

I,J+1

)

dI, j+1 wi th dI, j+1 =
AI, j+1

aI, j+1

. (5.15) 

Considering that, in addition to the conservation equations of momentum, the velocity 

field must also satisfy the continuity equation. Referring to Fig. 5.8, the discretised 

form of the continuity equation can be expressed as 

. 

[

(ρuA)i+1,J − (ρuA)i,J
]

+
[

(ρuA)I, j+1 − (ρuA)I, j
]

= 0.

Substituting the values of.ui,J ,.vI, j ,.ui+1,J , and.vI, j+1 given respectively by Eqs. 5.12, 

5.13, 5.14, and 5.15, the  discretised equation for pressure correction is obtained: 

. aI,J p
′
I,J = aI+1,J p

′
I+1,J + aI−1,J p

′
I−1,J + aI,J+1 p

′
I,J+1 + aI,J−1 p

′
I,J−1 + b′

I,J

(5.16) 

in which 

. aI+1,J = (ρd A)i+1,J ,

aI−1,J = (ρd A)i,J ,

aI,J+1 = (ρd A)I, j+1 ,

Fig. 5.8 Control volume 

used for the discretisation of 

the continuity equation on a 

staggered backward grid (see 

also Fig. 5.2)
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aI,J −1 = (ρd A)I, j , 

aI,J = aI+1,J + aI −1,J + aI,J +1 + aI,J−1, 

b′
I,J =

(

ρu∗ A
)

i,J 
−

(

ρu∗ A
)

i+1,J 
+

(

ρu∗ A
)

I, j 
−

(

ρu∗ A
)

I, j+1 
. 

It can be noted that the source term .b′
I,J derives from the initial imposition of a 

velocity field, whose components .u∗ and .v∗ are not the exact values, but are either 

first-guess values or those resulting from the preceding iteration. Solving Eq. 5.16 

for each cell in the computational domain results in the .p′ pressure correction field. 

Using the correction formula (5.9), the pressure correction field determines the . p

pressure field, certainly respecting the continuity equation. Similarly, the correction 

formulas (5.10) and (5.11) are used for the two components of velocity. The velocity 

field thus obtained certainly respects the conservation of mass equation but does 

not necessarily satisfy the two conservation equations of momentum (due to the 

approximation made by neglecting the terms .
∑

anbu
′
nb and .

∑

anbv
′
nb). 

1. The velocity and pressure fields obtained in this way are referred to as corrected; 

2. the procedure is iteratively repeated until the conservation equations—mass and 

momentum—are simultaneously satisfied. 

It is important to note that neglecting the terms.
∑

anbu
′
nb and.

∑

anbv
′
nb does not affect 

the final solution (the one obtained at the end of the iterative procedure) because, once 

convergence is achieved, the pressure correction term .p′ and the velocity correction 

terms become very small—effectively zero. The flowchart of the SIMPLE algorithm 

is shown in Fig. 5.9. In this figure, the reader can anticipate the implicit solution 

approach—which enhances numerical stability—as well as the explicit approach. 

This explains the ‘Semi-Implicit’ part of the name of this algorithm. 

5.3.1 Numerical Example of Application of the Pressure 

Equation of Correction 

The case of a steady unidimensional incompressible flow inside a duct of constant 

section will be analysed in this case. It is immediately evident that the solution is 

a constant velocity field throughout the duct. This example demonstrates that by 

solving the pressure correction equation, an initial velocity field with a non-uniform 

distribution can still lead to the exact solution that respects the mass conservation 

equation. 

From Fig. 5.10, it is evident that a staggered backward grid is employed. The 

pressure is computed at the cell centres .I = A, B,C, D (as seen in the cell bounded 

by points 1 and 2), while the velocity is computed at the cell centres . i = 1, 2, 3, 4

(as seen in the cell bounded by points A and B). The purpose of this example is 

to demonstrate the validity of the procedure that underlies the SIMPLE algorithm.
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Fig. 5.9 Flowchart of the SIMPLE algorithm 

Fig. 5.10 Discretisation 

diagram of the flow inside a 

duct with constant section 

Specifically, the equation of pressure correction (5.16) is utilised to compute the 

pressure correction field . p′, followed by the velocity correction field according to 

the 

.u′ = d
(

p′
I − p′

I+1

)

(5.17) 

from which the corrected velocity field is derived according to the
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. u = u∗ + u′.

The data for the problem are as follows: 

• constant density .ρ = 1 kg/m3; 

• constant duct cross-section . A; 

• the coefficient . d is taken as a constant value of 1 (see Eqs. 5.12, 5.14, 5.13, and 

5.15 in Eq. 5.17); 

• the boundary conditions are: .u1 = 10 m/s and .pD = 0 Pa; 

• the initial velocity field for the calculations is: .u∗
2 = 8 m/s, .u∗

3 = 11 m/s, and . u∗
4 =

7 m/s. 

The solution to this problem is a constant velocity field of .10 m/s. The SIMPLE 

algorithm is applied to compute the pressure correction at nodes.I = A, B,C, D and 

the corrected velocity at nodes .i = 2, 3, 4 to verify the correctness of the numerical 

solution. In this example, the pressure correction Eq. 5.16 is 

.aP p
′
P = aW p′

W + AE p
′
E + b′ (5.18) 

with 

. aW = (ρd A)w ,

aE = (ρd A)e ,

aP = aW + aE ,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
.

Equation 5.18 is applied to nodes .I = A, B,C, D, beginning with nodes that are not 

part of boundary cells. For node . B, this gives: 

. aW = (ρd A)w = (ρd A)2 = 1 × 1 × A = A,

aE = (ρd A)e = (ρd A)3 = 1 × 1 × A = A,

aP = aW + aE = A + A = 2A,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
=

(

ρu∗A
)

2
−

(

ρu∗A
)

3
= (1 × 8 × A) − (1 × 11 × A) = −3A

thus, the pressure correction equation for node . B is expressed as 

. (2A)p′
B = (A)p′

A + Ap′
C + (−3A).

Considering that section . A does not change, it is 

.2p′
B = p′

A + p′
C − 3.
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For node . C we have: 

. aW = (ρd A)w = (ρd A)3 = 1 × 1 × A = A,

aE = (ρd A)e = (ρd A)4 = 1 × 1 × A = A,

aP = aW + aE = A + A = 2A,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
=

(

ρu∗A
)

3
−

(

ρu∗A
)

4
= (1 × 11 × A) − (1 × 7 × A) = 4A

thus, the pressure correction equation for node . C is expressed as 

. (2A)p′
C = (A)p′

B + Ap′
D + 4A.

Given that the cross-section . A remains constant, it follows that 

. 2p′
C = p′

B + p′
D + 4.

For the centre . A, it is the centre of a cell that lacks a neighbouring cell to the left. In 

this case, .aW is set to 0, and the boundary condition is considered by incorporating 

its contribution as a source term: 

. aW = 0,

aE = (ρd A)e = (ρd A)2 = 1 × 1 × A = A,

aP = aW + aE = 0 + A = A,

b′ =
(

ρu∗A
)

w
−

(

ρu∗A
)

e
+ (ρu1A) =

(

ρu∗A
)

2
− (ρuA)1 = −(1 × 8 × A) + (1 × 10 × A) = 2A

thus, the pressure correction equation for node . A is expressed as 

. Ap′
A = 0 + Ap′

B + 2A.

Given that the cross-section . A remains constant, it follows that 

. p′
A = p′

B + 2.

For node . D, the pressure correction is not calculated, as .p′
D = 0 due to the pressure 

at .D being set as a boundary condition. 

The system of four equations to determine the pressure corrections .p′
A, .p

′
B , .p

′
C , 

and .p′
D will be 

.p′
A = p′

B + 2

2p′
B = p′

A + p′
C − 3

2p′
C = p′

B + p′
D + 4

p′
D = 0
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that is, by imposing .p′
D = 0, 

. p′
A = p′

B + 2

2p′
B = p′

A + p′
C − 3

2p′
C = p′

B + 4

which can be written in matrix form as 

. 

⎡

⎣

1 −1 0

−1 2 −1

0 −1 2

⎤

⎦

⎡

⎣

p′
A

p′
B

p′
C

⎤

⎦ =

⎡

⎣

2

−3

4

⎤

⎦ .

The solution to this system of equations gives .p′
A = 4, .p′

B = 2, and .p′
C = 3. Once 

the pressure corrections are known, the corrected velocities can be obtained using 

the relation .u = u∗ + d(p′
I − p′

I+1). 

For node . 2: 

. u2 = u∗
2 + d(p′

A − p′
B) = 8 + 1 × (4 − 2) = 10 m/s.

For node . 3: 

. u3 = u∗
3 + d(p′

B − p′
C) = 11 + 1 × (2 − 3) = 10 m/s.

For node . 4: 

. u4 = u∗
4 + d(p′

C − p′
D) = 7 + 1 × (3 − 0) = 10 m/s.

The solution obtained matches the exact solution. Due to its simplicity, this example 

has enabled (a) obtaining the exact solution in a single iteration, and (b) not requiring 

the calculation of the momentum conservation equation to determine the velocity 

field used in the pressure correction equation. In more general cases, the coefficient 

. d cannot be treated as constant, and the conservation of momentum equation must 

be solved at each iteration to determine the coefficients of the pressure correction 

equation in all cells of the computational domain. 

5.3.2 Example of Application of the SIMPLE Algorithm 

In this example, a non-viscous, incompressible and stationary flow within a converg-

ing duct is considered. As shown in Fig. 5.11, the computational domain is discretised 

using the forward staggered grid method, with five equidistant nodes for pressure 

calculation and four for velocity calculation. The grid is forward staggered because 

the centre of the cell bounded by points A and B (labelled . 1 in Fig. 5.11), initially
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Fig. 5.11 Discretisation 

diagram of the flow within a 

variable section duct 

Fig. 5.12 Value of the duct 

area and the exact pressure 

calculated using Bernoulli’s 

equation at cell centres . A, . B, 

. C , .D and . E

used for velocity calculation, is shifted in the increasing direction (from left to right) 

relative to the centre of the cell bounded by points 1 and 2 (labelled . A in Fig. 5.11), 

which is initially used for pressure calculation. The aim of the example is to calcu-

late the pressure in the cell centres .A, B,C, D, E and the velocity in the cell centres 

.1, 2, 3, 4. 

The data given for solving the problem are: 

• the fluid density is constant and equal to .1 kg/m3; 

• the length of the duct is . 2 m, implying that the extension of a single cell is . �x =

2/4 = 0.5 m; 

• the inlet section at centre. A has.AA = 0.5 m2 and the outlet section at centre. E has 

.AE = 0.1 m2. Assuming a linear variation of the duct section between the inlet 

and outlet, Figs. 5.12 and 5.13 show the areas of the sections at the locations of 

the centres of the cells used for pressure and velocity calculations; 

• the boundary conditions are: 

– total pressure .p0 = 10 Pa at the inlet section in correspondence with the centre 

of cell . A; 

– static pressure.pE = 0 Pa at the outlet section in correspondence with the centre 

of cell . E . 

• For velocity field initialisation, an initial guess of the flow rate .ṁ = 1 kg/s is 

assumed, and based on this, the velocity is calculated using .u = ṁ/(ρA). Thus, 

the following initial velocity values 1 for nodes .1, 2, 3, 4 are computed:

1 Although only 5 decimal places are shown here and in the following, the calculations performed 

to obtain the results are in double precision. 
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Fig. 5.13 Value of the duct 

area and the exact speed 

calculated using Bernoulli’s 

equation at cell centres . 1, . 2, 

. 3, . 4 and . 5

. u1 = ṁ/(ρA1) = 1/(1 × 0.45) = 2.22222 m/s,

u2 = ṁ/(ρA2) = 1/(1 × 0.35) = 2.85714 m/s,

u3 = ṁ/(ρA3) = 1/(1 × 0.25) = 4.00000 m/s,

u4 = ṁ/(ρA4) = 1/(1 × 0.15) = 6.66666 m/s;

• the initial pressure field is imposed assuming a linear variation of the pres-

sure between nodes . A and . E : .p∗
A = p0 = 10 Pa, .p∗

B = 7.5 Pa, .p∗
C = 5 Pa, . p∗

D =

2.5 Pa, .p∗
E = 0 Pa (as per boundary condition). 

The exact solution to this stationary, incompressible, non-viscous problem can be 

derived using Bernoulli’s equation: 

. p0 = pN +
1

2
ρ

(

ṁ

ρAN

)2

where the subscript.N denotes the generic pressure node. Considering node. E , where 

.AE = 0.1 m2, and the boundary conditions.p0 = 10 Pa and.pE = 0 Pa, the flow rate 

is.ṁ = 0.44721 kg/s. Knowing the flow rate, the exact values of pressure and velocity 

can be determined, as shown in Figs. 5.12 and 5.13, respectively, for the centres . A, 

. B, . C , . D, .E and for nodes . 1, . 2, . 3, . 4, and . 5. 

The governing equations for this stationary, one-dimensional, incompressible, and 

non-viscous problem are as follows: the conservation of mass equation 

. 

d

dx
(ρAu) = 0

and the conservation of momentum equation 

.ρAu
du

dx
= −A

dp

dx
. (5.19) 

It should be noted that, although the problem is incompressible, the density term has 

not been removed to avoid complicating aspects related to dimensional analysis.
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In this case, the discretised form of the momentum conservation Eq. 5.19 is 

. (ρAu)e ue − (ρAu)w uw =
�p

�x
�V (5.20) 

where .�p = pw − pe, and .�V is the volume (area in the two-dimensional case, 

length in the one-dimensional case) of the considered cell. Using the standard notation 

introduced earlier, Eq. 5.20, applied to the generic cell of centre . P , can be written as 

.aPu
∗
P = aWu∗

W + aEu
∗
E + Su . (5.21) 

In the case where the upwind scheme is applied, the coefficients of Eq. 5.21 can be 

expressed as 

. aW = Dw + max(Fw, 0),

aE = De + max(0,−Fe), (5.22) 

aP = aW + aE + (Fe − Fw). 

Since the flow is inviscid, the terms.Dw and.De will be zero. For the terms.Fw and.Fe, 

the area values reported in Fig. 5.13 will be used; in this example, the velocity values 

for the calculation of the flows .Fe and .Fw will be obtained by averaging the values 

at the centres of the cells that share the considered face. At the first iteration, the 

velocity values are those of the first guess. For the subsequent iterations, the velocity 

values are those obtained after solving the equation of pressure correction. 

The source term .Su will be 

. Su =
�p

�x
× �V =

�p

�x
× Aav�x = �p ×

1

2
(Aw + Ae)

where the approximation given by setting .Aav = 1/2 (Aw + Ae) has an order of 

accuracy consistent with the upwind scheme. 

Finally, the expression for the coefficients of the discretised momentum conser-

vation equation will be 

. Fw = ρAwuw,

Fw = ρAwuw,

aW = Fw,

aE = 0,

aP = aW + aE + (Fe − Fw)

Su = �p ×
1

2
(Aw + Ae) = �p × AP .

In which, with reference to Eq. 5.22, .aE = 0 is set.
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The parameter. d, required for the calculation of velocity and pressure corrections, 

can be defined here as 

.d =
Aav

aP

=
aw + Ae

2aP

. (5.23) 

Discretisation of the Pressure Correction Equation 

The discretised form of the mass conservation equation for the central cell P is 

. (ρAu)e − (ρAu)w = 0

and the corresponding pressure correction equation is 

. aP p
′
P = aW p′

W + aE p
′
E + b′

with 

. aW = (ρd A)w ,

aE = (ρd A)e ,

b′ = (F∗
w − F∗

e )

where Eq. 5.23 provides the expression for the parameter. d. In the SIMPLE algorithm, 

the pressure correction is used to determine the corrected pressure and velocity: 

. u′ = d
(

p′
I − p′

I+1

)

,

p = p∗ + p′,

u = u∗ + u′.

Numerical Values of Momentum Conservation Equation Coefficients 

Initially, the internal nodes 2 and 3 are considered. 

• Node 2 

.Fw = ρAwuw = 1 × 0.4 ×
u1 + u2

2
= 1 × 0.4 ×

2.2222 + 2.8571

2
= 1.01587,

Fw = ρAwuw = 1 × 0.3 ×
u2 + u3

2
= 1 × 0.3 ×

2.8571 + 4

2
= 1.02857,

aW = Fw = 1.01587,

aE = 0,

aP = aW + aE + (Fe − Fw) = 1.01587 + 0 + (1.02857 − 1.01587) = 1.02857,
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Su = �p × 
1 

2 
( Aw + Ae) = �p × AP 

= �p × A2 = (pB − pC )A2 = (7.5 − 5)0.35 = 0.875. 

Therefore, for node 2, the discretised momentum conservation equation is 

. 1.02857u2 = 1.01587u1 + 0.875.

For this node, the value of the parameter . d is 

. d2 =
A2

aP

=
0.35

1.02857
= 0.34027.

• Node 3 

By repeating the same procedure, the result is: 

. 1.06666u3 = 1.02857u2 + 0.625

and 

. d3 =
A3

aP

=
0.25

1.06666
= 0.23437.

• Node 1 

The cell centred at node 1 must be treated specially because one of its faces is a 

boundary face. In particular, on the face centred at node . A, a fixed total pressure 

of .10 Pa is imposed. This pressure corresponds to the static pressure of the fluid 

at rest inside the tank to which the entrance of the duct is connected. At node 

. A, since the velocity is non-zero, the static pressure will be lower than the total 

pressure. Indicating with .uA the velocity at the centre of section . A, it is possible to  

use Bernoulli’s equation to obtain the value of the static pressure at. A as a function 

of the total pressure: 

.pA = p0 −
1

2
ρu2A. (5.24) 

Considering the continuity equation, the result is 

.uA = u1A1

1

AA

(5.25) 

and substituting into Eq. 5.24 

.pA = p0 −
1

2
ρu21

(

A1

A2

)2

. (5.26)
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Considering the expression for .pA, the discretised momentum conservation 

equation for the cell centred at node 1, using the upwind scheme, is (see Eq. 5.22): 

.Feu1 − FwuA = (pA − pB) A1 (5.27) 

where the term.Fw = ρuAAA is calculated using the continuity equation (Eq. 5.25): 

. Fw = ρuAAA = ρu1A1.

At this stage, Eq. 5.27 can be written as 

. Feu1 − Fwu1
A1

AA

=

[

p0 −
1

2
ρu21

(

A1

A2

)2

− pB

]

A1

and rearranging 

.

[

Fe − Fw

A1

AA

+ Fw

1

2

(

A1

A2

)2
]

u1 = (p0 − pB) A1 (5.28) 

From this, it is clear that the term in square brackets multiplying .u1 corresponds 

to the coefficient .aP for this cell. To stabilise the iterative process, the term 

.Fw

1

2

(

A1

A2

)

u1 is moved to the right-hand side of Eq. 5.28, replacing the current 

value of .u1 with the value from the previous iteration (see Sect. 3.1.6 in relation 

to the deferred correction strategy): 

.

[

Fe + Fw

1

2

(

A1

A2

)2
]

u1 = (p0 − pB) A1 + Fw

A1

AA

uold1 . (5.29) 

Turning to the numerical values, we have: 

. ua = u1
A1

A2

= 2.2222 ×
0.45

0.5
= 2,

Fw = (ρuA)w = ρuAAA = 1 × 2 × 0.5 = 1.

The flow .Fe is calculated as for the face of an interior point: 

.Fe = (ρuA)e = 1 ×
u1 + u2

2
× 0.4 = 1 ×

2.2222 + 2.8571

2
× 0.4 = 1.01587,

aW = 0,

aE = 0,

aP = Fe + Fw

1

2

(

A1

A2

)2

= 1.01587 + 1 × 0.5 ×

(

0.45

0.5

)2

= 1.42087.
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By setting .p0 = 10 Pa and .uold1 = 2.2222 m/s, the source term .Su for this cell can 

be written as 

. Su = (p0 − pB) A1 + Fw

A1

AA

uold1 = (10 − 7.5) × 0.45 + 1 ×
0.45

0.5
× 2.22222 = 3.125.

Thus, for node 1, the discretised momentum conservation equation is 

. 1.42087u1 = 3.125.

The value of the parameter . d at this node is 

. d1 =
A1

aP

=
0.45

1.4209
= 0.31670.

• Node 4 

. Fw = (ρuA)w = 1 ×
u3 + u4

2
× 0.2 = 1.06666.

As for the east face of the cell with this node at its centre, velocity values are not 

available at the centre of one of the two cells it belongs to, as the pressure, not the 

velocity, is imposed as a boundary condition on this face. The mass flux .Fe on this 

face is thus calculated, assuming it coincides with the flow rate passing through 

the duct. Therefore, 

. Fe = (ρuA)4 .

Given the initially assumed flow rate of . 1 kg/s, it follows that 

. aW = Fw = 1.06666,

aE = 0,

aP = aW + aE + (Fe − Fw) = 1.06666 + 0 + (1 − 1.06666) = 1,

Su = �p × Aav = (pD − PE ) × A4 = (2.5 − 0) × 0.15 = 0.375

where the boundary condition.pE = 0 Pa has been applied. Finally, the discretised 

momentum conservation equation for node 4 becomes 

. 1u4 = 1.0666u3 + 0.375.

The value of the parameter . d at this node is 

.d4 =
A4

aP

=
0.15

1
= 0.15.
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In conclusion, the discretised momentum conservation equations for the four velocity 

nodes are 

. 1.42087u1 = 3.125,

1.02857u2 = 1.01587u1 + 0.875,

1.06666u3 = 1.02857u2 + 0.625,

1.00000u4 = 1.0666u3 + 0.375.

The solution of this system is 

. u1 = 2.19935 m/s,

u2 = 3.02289 m/s,

u3 = 3.50087 m/s,

u4 = 4.10926 m/s.

These are the first-attempt speeds in the pressure correction calculation procedure, 

that is, the speeds marked with the superscript . ∗ when the SIMPLE algorithm was 

illustrated. 

5.3.2.1 Numerical Values of the Coefficients of the Pressure Correction 

Equation 

The centres of the cells used for pressure calculation are now used. Nodes . B, . C , and 

.D are internal nodes. 

• Node B 

For this node it will be 

. aW = (ρd A)1 = 1 × 0.3167 × 0.45 = 0.14251,

aE = (ρd A)2 = 1 × 0.34027 × 0.35 = 0.11909,

F∗
w = (ρu∗A)1 = 1 × 2.199352 × 0.45 = 0.98971,

F∗
e = (ρu∗A)2 = 1 × 3.022894 × 0.35 = 1.05801,

aP = aW + aE = 0.14251 + 0.11909 = 0.26161,

b′ = F∗
w − F∗

e = 0.98971 − 1.05801 = −0.06830.

Therefore, the discretised pressure correction equation. aC p
′
C = aW p′

W + aE p
′
E +

b′, for node . B, becomes 

.0.26161p′
B = 0.14251p′

A + 0.11909p′
C − 0.06830.
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• Node C 

Similarly to what was done for node . B, for this node, it is 

. 0.17769p′
C = 0.11909p′

B + 0.058593p′
D + 0.18279.

• Node D 

Similarly to what was done for node . B, for this node it is 

. 0.081093p′
D = 0.058593p′

C + 0.25882.

• Node E 

On this node the boundary condition that sets the pressure to zero is imposed. Since 

the pressure is known, the value of the pressure correction will be zero: .p′
E = 0. 

• Node A 

On this node the boundary condition that sets the total pressure is imposed. For 

simplicity, Eq. 5.26 is reported here. 

.pA = p0 −
1

2
ρu21

(

A1

A2

)2

(5.30) 

Knowing the pressure and speed values, the total pressure value is obtained. In 

the SIMPLE algorithm, the available velocity value before the solution of the 

pressure correction equation is the one marked with the superscript . ∗, resulting 

from the solution of the momentum conservation equation at the previous iteration. 

Nevertheless, the value of static pressure, if calculated with Eq. 5.30, is consistent 

with the current velocity value. For this reason, at node. A, the value of the pressure 

correction is set to zero: .p′
A = 0. 

In conclusion, the discretised pressure correction equations for the three pressure 

nodes are: 

. 0.26161p′
B = 0.11909p′

C − 0.06830,

0.17769p′
C = 0.11909p′

B + 0.058593p′
D + 0.18279,

0.081093p′
D = 0.058593p′

C + 0.25882.

The solution of this system is 

.p′
A = 0,

p′
B = 1.63935,

p′
C = 4.17461,

p′
D = 6.20805,

p′
E = 0.
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Knowing the value of the pressure correction, it is possible to obtain the value of the 

corrected pressure 

. pB = p∗
B + p′

B = 7.5 + 1.63935 = 9.13935,

pC = p∗
C + p′

C = 5 + 4.17461 = 9.17461,

pD = p∗
D + p′

D = 2.5 + 6.20805 = 8.70805

and, therefore, the corrected speeds after the first iteration. 

. u1 = u∗
1 + d1(p

′
A − p′

B) = 2.19935 + 0.31670 × (0 − 1.63935) = 1.68015 m/s,

u2 = u∗
2 + d2(p

′
B − p′

C ) = 3.02289 + 0.34027 × (1.63935 − 4.17461) = 2.16020 m/s,

u3 = u∗
3 + d3(p

′
C − p′

D) = 3.50087 + 0.23437 × (4.17461 − 6.20805) = 3.02428 m/s,

u4 = u∗
4 + d4(p

′
D − p′

E ) = 4.10926 + 0.15 × (6.20805 − 0) = 5.04047 m/s.

The value of the static pressure at node . A is also known after the first iteration: 

. pA = p0 −
1

2
ρu21

(

A1

A2

)2

= 10 −
1

2
× 1 × (1.68015 ×

0.45

0.5
)2 = 8.85671.

With the known velocity values, it is possible to calculate the value of the flow rate 

at each of the four velocity nodes: 

. ρu1A1 = 0.75607,

ρu2A2 = 0.75607,

ρu3A3 = 0.75607,

ρu4A4 = 0.75607.

Observing the values obtained for the flow rate after the first iteration, it can be 

deduced that: 

• since the values are the same for each of the nodes in this numerical example, one 

of the aspects that makes the SIMPLE algorithm so widely used and popular is 

highlighted: at each iteration, the continuity equation is always respected, even if 

the velocity field does not satisfy the momentum conservation equation. 

• the flow rate value obtained at the first iteration differs by .69% from that deter-

mined with the Bernoulli equation, equal to .0.44721 kg/s: this is mainly due to the 

fact that the coefficients of the discretised momentum conservation equation were 

obtained based on the first guess values for the velocity. To obtain a velocity and 

pressure field that simultaneously satisfy both the mass and momentum conserva-

tion equations, further iterations will need to be performed, ideally until the perfect 

satisfaction of the two equations is achieved. In reality, given the finite number
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of digits with which computers can store numbers and the consequent limited 

precision, the perfect balance between the mass conservation equation (i.e., the 

pressure correction equation) and the momentum conservation equation will be 

impossible to achieve. As a consequence, the iterative procedure will be stopped 

when further iterations produce negligible variations in pressure and velocity.



Chapter 6 

OpenFOAM® 

In general, a solver based on the finite volume method applies the discretised trans-

port equations to all the cells in the computational domain. This results in a number of 

algebraic equations whose system, once solved, provides the solution for all trans-

ported quantities. For this to be possible, it is necessary to provide very precise 

information: 

• the computational grid (mesh); 

• the boundary and initial conditions; 

• physical properties such as density, viscosity, diffusion coefficient, etc.; 

• the spatial discretisation scheme for each term (convective, diffusive, source) of 

the conservation equations; 

• the time discretisation scheme; 

• the strategy for solving the linear system constituted by the discretised conservation 

equations applied to each element of the grid; 

• the value of the parameters (under-relaxation factors, stop condition, etc.) that 

regulate the execution of the resolution process. 

In the case of OpenFOAM®, this information is provided through text files contained 

in the folder of the case to be executed or in sub-folders: 

• the computational grid is provided through the files contained in the directory 

constant/polymesh; 

• the initial and boundary conditions are contained in the files located in the 

folder 0; 

• the discretisation schemes definition is contained in the file fvSchemes inside 

the folder system; 

• the information related to the solution of the system of differential algebraic equa-

tions and the under-relaxation factors are contained in the file fvSolution inside 

the folder system; 
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• the value of the parameters that regulate the execution of the process resolution is 

contained in the file controlDict inside the folder system. 

6.1 Discretisation Schemes 

In the file fvSchemes, the selected discretisation schemes are contained, one for 

each term of the general transport equation. Figure 6.1 shows an extract of this file. 

• the area identified by the word ddtSchemes is the one in which the time 

discretisation is defined; 

• the area identified by the word gradSchemes is the one in which it is defined how 

to calculate, in the cell centre, the gradient of the transported quantity; 

• the area identified by the word divSchemes is the one in which the discretisation 

of the convective terms is defined; 

• the area identified by the word laplacianSchemes is the one where the discretisa-

tion of the diffusive terms is defined; 

• the area identified by the word interpolationSchemes is the one where the type of 

interpolation chosen to obtain the value of the transported quantity on the centroid 

of the face from that in the centroid of the adjacent cells is defined; 

• the area identified by the word snGradSchemes is the one where the scheme for 

computing the normal to the face component of the gradient at the centroid of the 

face is defined. The calculation of this quantity, limited to the case of diffusive 

terms, is specified in the area laplacianSchemes. 

To know, for each item, what the possible values are, simply modify the word origi-

nally present in the file so that it is incorrect (for example, backward -> backward) 

and launch the solver. The program will stop, providing the list of acceptable values. 

Fig. 6.1 Extract from the 

file fvSchemes
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6.1.1 Temporal Discretisation Schemes 

The source code of the available time discretisation schemes is contained in the folder 

WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ddtSchemes. 

The most frequently used schemes are: 

• steadyState, used for stationary calculations; 

• Euler, first-order accurate and used to perform non-stationary calculations; 

• backward, second-order accurate and used to perform non-stationary calculations; 

• CrankNicolson, second-order accurate and used to perform non-stationary 

calculations. 

First-order accurate schemes are stable and do not cause non-physical oscillations, 

but the low level of accuracy may be inadequate. Second-order accurate schemes, 

while more accurate, can give rise to non-physical oscillations. In the case of the 

Euler scheme, the time integration takes place according to the following formula: 

.

∫

V

∂φ

∂t
dV ≈

(

φ − φ0
) V

�t
(6.1) 

where .φ0 is the column vector whose terms represent the value of the considered 

quantity in all the cells of the computational domain at the previous time. Equation 6.1 

modifies the system of equations resulting from the application of the conservation 

equations, represented in matrix form, as follows: 

.

⎡

⎢
⎢
⎣

� ∗ ∗

∗ � ∗

∗ � ∗

∗ ∗ �

⎤

⎥
⎥
⎦

[

φ
]

=

⎡

⎢
⎢
⎣

∗

∗

∗

∗

⎤

⎥
⎥
⎦

. (6.2) 

Specifically, the main diagonal of the coefficients matrix is modified by the presence 

of the term .
V
�t
: as the time integration interval decreases, there will be an increase in 

the value of this term, which will contribute to improve the diagonal dominance of 

the matrix. The term .φ0 V
�t

instead modifies the vector of known terms on the right 

hand side of Eq. 6.2. 

In the case of the backward scheme, the time integration takes place according to 

the following formula 

.

∫

V

∂φ

∂t
dV ≈

(

3φ − 4φ0 + φ00
) V

2�t
(6.3) 

where .φ00 is the column vector whose terms represent the value of the considered 

quantity in all the cells of the computational domain two time steps before the cur-

rent step. The implementation of the Crank-Nicolson scheme (see also Sect. 3.5.2) 

involves the use of a blending factor .ψ that allows a gradual transition from a first-

order accurate scheme, coinciding with the Euler scheme, to a second-order accurate
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Fig. 6.2 Syntax of the terms to be inserted in the file fvSchemes to set the Crank-Nicolson 

scheme 

scheme, coinciding with the Crank-Nicolson scheme. The syntax of the terms to be 

inserted in the fvSchemes file is shown in Fig. 6.2. By setting the value of .ψ to 

zero, the Euler scheme (stable but not very accurate) is obtained. By setting .ψ equal 

to 1, the pure Crank-Nicolson scheme (very accurate but less stable and with possible 

non-physical oscillations in the results) is obtained. In most cases, .ψ = 0.7 ÷ 0.9 is 

set to achieve a good compromise between stability and accuracy. The word “default” 

indicates that all the time derivative terms present in the treated equations will be 

discretised using the scheme specified on the same line after this word. In the case 

of non-stationary simulations, the word bounded must not appear in any of the 

schemes for the discretisation of the convective terms (divSchemes). 

6.1.2 Discretisation Schemes of the Convective Terms 

The source code of the discretisation schemes for the convective terms is contained 

in the folder WM_PROJECT_DIR/src/finiteVolume/interpolation/ 

surfaceInterpolation. The most frequently used schemes are: 

• upwind, first-order accurate; 

• linear, second-order accurate but with the possibility of producing non-physical 

over- or under-estimates; 

• limitedLinear, this scheme requires specifying a number between 0 and 1 next to 

the word limitedLinear: 

– if the number is equal to 0, the interface value is calculated using the linear 

scheme for all cells in the domain; 

– if the number is equal to 1, the scheme with a flow limiter is used (see 

Sect. 3.1.7) with .ψ(r) = min(2r, 1); 

– if the number is between 0 and 1, each cell will have an intermediate value 

between those obtained for the two extreme values; 

• limitedLinearV, in the case of vector fields, instead of calculating a limiter value 

for each component of the vector field, a single limiter value is applied to all 

components, choosing the one related to the component exhibiting the highest 

gradient value. This increases stability (by eliminating possible wiggles) at the 

expense of accuracy; 

• linearUpwind, second-order accurate and without non-physical over- or under-

estimates;
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• linearUpwindV, in the case of vector fields, the greatest of the gradients of the 

vector components is used as the gradient for the linear corrective term; 

• Minmod, second-order accurate TVD scheme without non-physical over- or 

under-estimates; 

• vanLeer, second-order accurate TVD scheme without non-physical over- or 

under-estimates; 

• LUST (Linear Upwind STabilised), blended scheme: 75% linear and 25% 

linearUpwind. 

Recalling what was already seen in Sect. 3.1.7, schemes with flux limiters aim to 

optimise the blending factor (the flux limiter) .ψ between the value of the quantity . φ

on the face obtained with the simple upwind scheme and the same value obtained by 

applying the centred scheme: 

. φ f = [1 − ψ(r)]φU W + ψ(r)φL I

in which it can be noted that (i) for .ψ = 0 the upwind scheme is obtained, (ii) for 

.ψ = 1 the centred scheme is obtained, (iii) the limiter .ψ is a function of the ratio 

. r between the value of the gradient .∇φ of the quantity . φ at the upwind cell centre 

and the value of the component .∇nφ f normal to the face of the gradient of the same 

quantity at the centroid of the considered face. In the case where. φ is a scalar quantity, 

the ratio . r is calculated in OpenFOAM® as 

. r = max

[

2
�d · ∇φ

|�d|∇nφ f

− 1, 0

]

where.�d is the vector connecting the centres of the two cells that share the considered 

face. 

In the case where. φ is a vector quantity, it is possible to use the schemes indicated as 

limitedLinearV, linearUpwindV, etc. In these cases, the ratio. r is calculated 

in OpenFOAM® as 

. r = 2
∇nφ f · �d · ∇φ

|�d|∇nφ f · ∇nφ f

− 1.

Various expressions exist for the flux limiter function. Here is the implementation in 

OpenFOAM® for some of them: 

• .ψ(r) = min(2r, 1) for the limited linear scheme; 

• .ψ(r) = min(r, 1) for the minmod scheme; 

• .ψ(r) =
r + |r |

1 + |r |
for the van Leer scheme; 

• .ψ(r) =
r2 + r

1 + r2
for the van Albada scheme. 

In the case where LUST or linearUpwind schemes (see Sects. 3.1.4 and 3.1.5) are  

used, it is necessary to know the value of the gradient of. φ at the cell centre because, in
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the case of linearUpwind, the value of the quantity considered at the face is calculated 

as (Figs. 6.3 and 6.4) 

. 

{

φ f = φP + ∇φP · r f or (u · n) f ≥ 0,

φ f = φN + ∇φN · r f or (u · n) f < 0

where . r is the cell centre-to-face centre distance vector. It is clear the necessity to 

specify the way in which this gradient (for example, the velocity gradient grad(U)) 

is calculated. As indicated in Fig. 6.5, the gradient calculation setting can be done 

explicitly or implicitly by inserting the word default instead of grad(U) in the 

Section gradSchemes and removing grad(U) in the Section divSchemes. It should 

be noted that in this second case, the gradient of all quantities will be calculated in 

the same way. To differentiate the way in which the gradient is calculated based on 

the quantity considered, it is possible to proceed as done in Fig. 6.1, in which the 

method to calculate the gradient of the pressure is specified separately from that used 

for all other quantities. 

Still, in the case where LUST or linearUpwind schemes are used, the value of the 

gradient, calculated as specified in Section gradSchemes, can lead to unacceptable 

Fig. 6.3 Value of .φ f for 

. (u · n) f ≥ 0

Fig. 6.4 Value of .φ f for 

.(u · n) f < 0
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Fig. 6.5 Explicit setting of 

the gradient calculation 

method of velocity 

Fig. 6.6 Calculation of . φ on 

the face 

values of the considered quantity at the faces of the generic cell. For simplicity, and 

with reference to Fig. 6.6, a one-dimensional grid is considered. In this case, the 

gradient is indicated by the slope of the line representative of the variation of . φ. 

If the cell-based strategy (i.e., linear interpolation, see Sect. 3.4) is adopted to 

calculate the value of the gradient in cell . i , one should consider the value of . φ at the 

centres of the two cells .i − 1 and .i + 1 to calculate the values .φl and .φr respectively. 

.φl and .φr are the values of the quantity at the two faces that delimit the cell. The two 

values thus obtained determine the value of the gradient (i.e., the inclination of the 

two dashed and parallel segments in Fig. 6.6) at the centre of the cell. This gradient 

value is used for the subsequent calculation of the face values of the quantity . φ when 

discretising the convective fluxes (Section divSchemes). 

It is evident from Fig. 6.6 that .φi−1 and .φi+1 are the values of . φ at the centres of 

the two cells adjacent to the one considered. Considering the interval on the ordinate 

axis between .φi−1 and .φi+1, the application of this gradient calculation procedure 

can lead to values of . φ on the faces outside this interval. In Fig. 6.6, the  value  .φl is 

lower than .φi−1. 

This phenomenon is known as the “unboundedness” of the scheme. Such a phe-

nomenon can make the entire simulation process unstable. If, for example, one con-

siders the turbulent viscosity calculation, the correctness of the velocity gradient 

is fundamental: excessive values would lead to an incorrect increase in viscosity, 

which in turn would artificially raise the value of the velocity gradient, triggering a 

self-feeding process that could lead to the destabilisation of the entire simulation. 

To avoid the occurrence of such situations, the so-called “gradient limiters” (see
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Sect. 6.1.3) are used. Thanks to gradient limiters, the gradient is modified to ensure 

that the value of . φ on the faces (the left face of the cell . i in the case of Fig. 6.6) is  

not outside the range of values determined by the cells close to the one considered 

(in the case of Fig. 6.6, .φl < φi−1 is avoided). 

In the divergence schemes area of the file fvSchemes (for historical rea-

sons), advective or transport terms of quantities other than velocity appear. 

Figure 6.15 presents the example of the advection scheme setting for turbulence-

related quantities such as . k and . ω. In this area, some very specific terms of a non-

precisely advective type also appear. For example, one can observe the diffusive term 

in the last line of the divSchemes area of Fig. 6.15: 

div((nuEff*dev2(T(grad(U))))) Gauss Linear; 

in which explicit reference is made to turbulent kinematic viscosity with the term 

nuEff. This diffusive term requires a type of discretisation different from the one 

used for advective terms. The heterogeneity of the nature of the terms present in this 

area requires that, unlike other areas, the word “none” must be used to explicitly state 

the chosen scheme for each term. 

It is finally noted that, in the case of non-stationary simulations, none of the 

chosen schemes should include the word bounded. Normally, convective terms 

are identified by terms that begin with div(phi,…), in which phi generally 

indicates 

• the volumetric flux through the faces of cells for incompressible cases; 

• the mass flux for compressible calculations. 

As an example, div(phi,U) indicates the advection term of velocity, 

div(phi,e) the advection term of internal energy, and so on. 

Schemes such as linearUpwindV or limitedLinearV differ from the cor-

responding versions for scalar fields in that the only limiting factor value for all com-

ponents is calculated based on the component that presents the highest gradients. 

Consequently, this scheme is more stable, although less accurate. 

The bounded version of the schemes for the discretisation of convective terms 

refers to the treatment of the material derivative, which can be expressed in terms of 

the time derivative and advection. In the case of internal energy . e, it is:  

. 

De

Dt
=

∂e

∂t
+ U · ∇e =

∂e

∂t
+ ∇ · (Ue) − (∇ · U) e.

For incompressible cases, the bounded version is used to improve convergence 

and maintain the boundedness of the scheme, including the term .(∇ · U) e, which 

becomes null once convergence is reached. 

6.1.3 Gradient Discretisation Schemes 

The available cell centre gradient calculation methods are:
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Fig. 6.7 Setting for the 

calculation of the velocity 

gradient at the centroid of the 

cell using the Gauss method 

and the cell based approach 

to calculate the velocity at 

the centroid of the faces 

• edgeCellsLeastSquares; 

• fourth; 

• Gauss; 

• leastSquares; 

• pointCellsLeastSquares. 

The source code for these schemes—all accurate to the second order—is contained 

in the folder WM_PROJECT_DIR/src/finiteVolume/finiteVolume/ 

gradSchemes. For some gradient calculation methods, it is necessary to spec-

ify the strategy used to obtain the value of the quantity at the centroid of the generic 

face. Considering, for example, the Gauss method for calculating the velocity gra-

dient, it is necessary to specify whether to use the cell- or node-based approach 

(see Sect. 3.4) to calculate the velocity at the centroid of the faces of the cell. If 

the cell-based strategy is chosen, the word linearmust be specified (see Fig. 6.7); 

if the node-based method is chosen, the word pointLinear should be specified 

instead of linear. In Fig.  6.7, the gradient of the referred quantity is specified first, 

followed by the method for calculating the gradient at the centroid of the cell. The 

final word specifies the method for calculating the quantity at the centroid of the 

face. There are gradient calculation schemes for which it is possible to use a limiter. 

In ascending order of numerical diffusivity, they are: 

• cellMDLimited; 

• cellLimited; 

• faceMDLimited; 

• faceLimited. 

The cell* type limiters restrict the value of the gradient in its component along 

the direction identified by two adjacent cell centres. The limiters of the face* type 

restrict the value of the gradient in its component along the direction identified by 

the face and the cell centroid. The multidimensional limiters (cellMDLimited and 

faceMDLimited) restrict the value of the gradient only along the direction normal 

to the face considered. The other limiters restrict all components of the gradient, not 

just the one along the normal to the face direction. The limiter used by default is 

minmod, but if the cellLimited option is used, it is possible to use two other limiters: 

cubic and Venkatakrishnan. For these two, the syntax to use is.cellLimited<cubic>
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Fig. 6.8 Syntax for the 

definition of gradient 

calculation 

and.cellLimited<Venkatakrishnan>, respectively. In OpenFOAM®, the implemen-

tation of limiters involves the use of a blending factor . ψ , as shown in Fig. 6.8. This  

coefficient can vary between 0 and 1. By setting this coefficient to 0, the limiter 

is disabled; by setting it equal to 1, it is enabled. Intermediate values will result in 

a weighted average of the two extreme cases. The most commonly used gradient 

discretisation schemes are Gauss, which involves the use of interpolation, and least-

Squares, which does not involve interpolation. The most commonly used limiter 

schemes are cellLimited and cellMDLimited. Except in special cases, these lim-

iters are applied only to certain quantities, including velocity and quantities related to 

the modelling of turbulence (.k, ǫ, ω), in order to avoid results affected by excessive 

numerical dissipation and excessively high residual values. 

6.1.4 Discretisation Schemes of Laplacian or Diffusive Terms 

The available schemes for calculating the component of the gradient normal to the 

face, in the context of the discretisation of Laplacian terms (see Sect. 3.3), are: 

• corrected; 

• faceCorrected; 

• limited; 

• linearFit; 

• orthogonal; 

• quadraticFit; 

• uncorrected. 

The source code for these schemes is contained in the folder WM_PROJECT_DIR/ 

src/finiteVolume/finiteVolume/snGradSchemes. The choice of 

scheme depends on the geometric characteristics of the computational grid. Fig-

ures 6.9, 6.10, 6.11, and 6.12 show some possible types of grid. The most frequently 

used schemes are: 

• orthogonal: used in the case of perfectly orthogonal, non-deformed hexagonal 

grids (see Fig. 6.9). This scheme is second-order accurate. It does not include
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Fig. 6.9 Orthogonal grid: 

orthogonal schemes should 

be used 

Fig. 6.10 Stretched 

orthogonal grid: corrected 

or limited with . ψ = 1

schemes should be used
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Fig. 6.11 Deformed grid 

with medium/low degree of 

non-orthogonality: limited 

with .ψ = 1 or . ψ = 0.5

scheme should be used 

Fig. 6.12 Unstructured grid: 

limited with . ψ = 0.5

scheme should be used
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corrections for non-orthogonality. Definition (3.37) is rewritten here for the sake 

of convenience. 

. S · (∇φ) f = |S|
φN − φP

|d|
;

• uncorrected: used in the case of non-deformed hexagonal grids with low non-

orthogonality (see Fig. 6.10), this scheme is second-order accurate. It does not 

include corrections for non-orthogonality. Definition (3.39) is used, truncated of 

the corrective term for non-orthogonality: 

. S · (∇φ) f = |�|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal contribution

where the term .� is calculated according to the over-relaxed method (see Sect. 

3.3); 

• corrected: used in the case of grids (see Fig. 6.11) with high non-orthogonality, 

this scheme is second-order accurate and applies corrections for non-orthogonality 

(see Sect. 3.3). Definition (3.39) is rewritten here for the sake of simplicity. 

. S · (∇φ) f = |�|
φN − φP

|d|
︸ ︷︷ ︸

orthogonal contribution

+

non orthogonal contribution
︷ ︸︸ ︷

k · (∇φ) f ;

• limited: derived from the corrected scheme, this scheme provides the blending 

factor. ψ , which limits the weight of the non-orthogonal contribution to a fraction of 

the orthogonal one. Highly non-orthogonal grids produce coefficient matrices with 

scarce diagonal dominance. When dealing with grids with high non-orthogonality 

(see Fig. 6.12), this approach prevents divergence of the solution process due to 

excessively high values of the non-orthogonal contribution. Some considerations 

regarding the blending factor .ψ follow. 

– By setting .ψ = 0 (no limitation), the uncorrected scheme is obtained. This 

option ensures greater stability but lower accuracy; 

– By setting .ψ = 1
3

= 0.333, the contribution of the orthogonal part will be . 1 −
1
3

= 2
3

= 0.666, and the ratio (blending factor)/(orthogonal part) will be equal 

to . 1
2

= 0.5. Therefore, the correction cannot exceed .50% of the value of the 

orthogonal part; 

– By setting.ψ = 1
2

= 0.5, the contribution of the orthogonal part will be. 1 − 1
2

=
1
2

= 0.5, and the ratio (blending factor)/(orthogonal part) will be equal to.
1
1

= 1. 

Therefore, the correction cannot exceed .100% of the value of the orthogonal 

part; 

– By setting .ψ = 1, the  corrected scheme is obtained, which ensures greater 

accuracy but lower stability.
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Fig. 6.13 Syntax for 

defining of the scheme 

limited 

In general, for grids with non-orthogonality less than .70◦, .ψ = 1 can be set (no 

limitation). For a non-orthogonality factor between .70◦ and .80◦, .ψ = 0.5 can 

be set, simultaneously increasing the number of non-orthogonal corrections (see 

further on). For a non-orthogonality factor greater than .80◦, .ψ = 0.33 can be set, 

increasing the number of non-orthogonal corrections (see further on). Grids with 

a non-orthogonality factor greater than .85◦ should be discarded due to insufficient 

quality. The syntax to use in the case of the limited scheme is indicated in Fig. 6.13, 

where the word Gauss indicates that the Gauss theorem is being used to switch 

from volume to surface integrals. The word Gauss is the only option in the case 

of discretisation of Laplacian terms. The presence of this word responds to code 

implementation needs. The word linear indicates the interpolation method used 

to calculate the value .Ŵ f of the diffusion coefficient on the face based on that at 

the cell centre. 

The available interpolation methods for the diffusion coefficient are: 

• cubic; 

• harmonic; 

• linear; 

• midPoint; 

• pointLinear; 

• reverseLinear. 

The one used in most cases is linear. As for the terms related to the snGradSchemes 

entry, the same value inserted for the laplacianSchemes entry is normally used, as 

shown in Fig. 6.14. 

Fig. 6.14 Syntax for 

defining the scheme for the 

normal-to-the-face 

component of gradient 

snGradSchemes 
{
  default limited 1.0; 
} 

laplacianSchemes 
{
  default Gauss linear limited 1.0; 
} 



6.2 Examples of Discretisation Scheme Settings 201

6.2 Examples of Discretisation Scheme Settings 

Below are some examples of settings for the file fvSchemes. 

6.2.1 Generic Setting 

These settings (see Fig. 6.15) are valid in most cases and are very similar to those 

preset in commercial solvers. They are second order accurate, and depending on the 

quality of the grid, it may be necessary to reduce the value of the blending factor 

related to the laplacianSchemes and snGradSchemes entries. If turbulent quantities 

(i.e.. k and. ω) assume unacceptable values, it is advisable to change the corresponding 

entry in divSchemes from linearUpwind to upwind, thus lowering the order of 

accuracy from second to first for these quantities. To keep the simulation stable 

and accurate over time, the value of the CFL (in the file controlDict) should 

be less than 2 for implicit solvers. As for the calculation of the gradient, although 

the leastSquares method is generally more accurate, non-physical oscillations may 

occur in the presence of tetrahedral grids because the leastSquares method is not 

conservative. 

Fig. 6.15 General settings ddtSchemes 
{
  default    CrankNicolson   0; 
} 

gradSchemes 
{
  default    cellLimited Gauss linear  0.5;
  grad(U)   cellLimited Gauss linear  1.0; 
} 

divSchemes 
{
  default    none;
  div(phi,U)  Gauss linearUpwindV grad(U);
  div(phi,omega)  Gauss linearUpwind default;
  div(phi,k)  Gauss linearUpwind default;
  div(nuEff*dev(T(grad(U)))  Gauss linear; 
} 

laplacianSchemes 
{
  default    Gauss linear limited 1.0; 
} 

interpolationSchemes 
{
  default    linear; 
} 

snGradSchemes 
{
  default    limited 1; 
} 
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6.2.2 Accurate Setting 

Figure 6.16 shows settings that make the calculation very accurate, and therefore 

more exposed to the risk of non-physical oscillations. These settings can be used for 

high-quality grids (low skewness and non-orthogonality) and for LES (Large Eddy 

Simulation) or RANS (Reynolds Averaged Navier–Stokes) simulations involving 

not too complex physical phenomena. To mitigate the effects of low-quality grids, 

lower values of the blending factor for laplacianSchemes and snGradSchemes can 

be used. 

6.2.3 Stable Setting 

Figure 6.17 shows settings that make the calculation very stable, more diffusive, and 

therefore less accurate (see also Fig. 3.17). These settings can be used for grids with 

poor quality (high skewness and non-orthogonality) and for simulations involving 

strong discontinuities or in cases of divergence in the calculations, leading to an 

unexpected interruption of the solution process. To mitigate the effects of low-quality 

grids, one can lower the values of the blending factor for laplacianSchemes and 

snGradSchemes. This type of setting is also used to perform a limited number of 

initial iterations, followed by the necessary number of iterations to reach convergence 

with settings that make the calculation more accurate. 

6.3 Linear Solvers 

The solvers for linear systems available in OpenFOAM® are: 

• PCG (Preconditioned Conjugate Gradient): a solver based on the precondi-

tioned gradient method, suitable for symmetric coefficient matrices; 

• PBiCGStab (Preconditioned Bi-conjugate Gradient Stabilised): a solver based 

on the preconditioned bi-conjugate gradient method, stabilised for both symmetric 

and asymmetric coefficient matrices; 

• PBiCG (Preconditioned Bi-conjugate Gradient): a solver based on the pre-

conditioned bi-conjugate gradient method, valid for asymmetric coefficient 

matrices; 

• smoothSolver: a solver that requires the specification of a smoother; 

• GAMG (Geometric-Algebraic Multi-Grid): a multi-grid solver; 

• diagonal: a diagonal solver valid for both symmetric and asymmetric coefficient 

matrices.
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The symmetry of the coefficient matrix depends on the terms of the equation being 

considered: time discretisation and Laplacian/diffusive terms introduce symmet-

ric elements, whereas the discretisation of advective terms introduces asymmetric 

elements. The preconditioners (see also Sect. 4.6.1) available in OpenFOAM® are: 

• diagonal: preconditioner valid for symmetric and asymmetric coefficient matrices; 

• DIC (Diagonal Incomplete Cholesky preconditioner): preconditioner valid for 

symmetric coefficient matrices; 

• DILU (Diagonal Incomplete LU preconditioner): preconditioner valid for asym-

metric coefficient matrices; 

• FDIC (Fast Diagonal Incomplete Cholesky preconditioner): preconditioner valid 

for symmetric coefficient matrices; 

• GAMG (Geometric Algebraic MultiGrid preconditioner): preconditioner valid for 

symmetric and asymmetric coefficient matrices. In this case, the GAMG method 

is used as a preconditioner. 

Finally, in the case where a smoother needs to be specified for the chosen solver, the 

options available in OpenFOAM® are: 

• GaussSeidel: the Gauss-Seidel method is applied to symmetric and asymmetric 

coefficients matrices; 

Fig. 6.16 Settings for 

accurate but unstable 

calculation 

laplacianSchemes 
{
  default    Gauss linear limited 1.0; 
} 

interpolationSchemes 
{
  default    linear; 
} 

snGradSchemes 
{
  default    limited 1; 
} 

ddtSchemes 
{
  default    CrankNicolson   0.7; 
} 

gradSchemes 
{
  default    leastSquares; 
} 

divSchemes 
{
  default    none;
  div(phi,U)  Gauss linear;
  div(phi,omega)  Gauss linear;
  div(phi,k)  Gauss linear;
  div(nuEff*dev(T(grad(U)))  Gauss linear; 
} 
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Fig. 6.17 Settings for less 

accurate (diffusive) but 

stable calculation 

interpolationSchemes 
{
  default    linear; 
} 

ddtSchemes 
{
  default    Euler; 
} 

gradSchemes 
{
  default    cellLimited Gauss linear  1.0; 
} 

divSchemes 
{
  default    none;
  div(phi,U)  Gauss upwind;
  div(phi,omega)  Gauss upwind;
  div(phi,k)  Gauss upwind;
  div(nuEff*dev(T(grad(U)))  Gauss linear; 
} 

laplacianSchemes 
{
  default    Gauss linear limited 0.5; 
} 

snGradSchemes 
{
  default    limited 0.5; 
} 

• symGaussSeidel: the Gauss-Seidel method is applied to symmetric coefficients 

matrices; 

• DIC: in the case of symmetric matrices, the Diagonal Incomplete-Cholesky method 

is applied; 

• DILU: in the case of non-symmetric matrices, the Diagonal Incomplete-LU 

method is applied; 

• DICGaussSeidel: in this case, if the matrices are symmetric, an iteration performed 

with the DIC method is followed by an iteration with the Gauss-Seidel method 

that eliminates any high-frequency errors resulting from the iteration performed 

with the DIC method; if the matrices are non-symmetric, an iteration performed 

with the DILU method is followed by an iteration with the Gauss-Seidel method, 

which eliminates any high-frequency errors resulting from the iteration performed 

with the DILU method. 

A smoother is a solver for systems of equations whose application eliminates high-

frequency errors. It is applied to the system of equations before the actual solver, and 

the number of times it is applied is equal to the value set for the optional parameter 

nSweeps, with a default value of 1.
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6.3.1 Geometric-Algebraic Multi-grid (GAMG) 

As mentioned in Sect. 4.7.4, this algorithm begins with the assembly phase of the 

grids that will be used in the subsequent phases. In OpenFOAM®, the strategy for 

generating the coarser grids is specified by the parameter agglomerator. If the  

values of the elements of the coefficients matrix are used to perform the agglom-

eration phase, the value to set for agglomerator is algebraicPair. If the  

chosen strategy for merging the cells of the grid is based on geometric parame-

ters, the value to set for agglomerator is faceAreaPair. This latter setting 

is considered more efficient than the former. The final option is MGridGen, which 

allows the use of the MGridGen library to perform the agglomeration process based 

on geometric considerations. In this case, it will be necessary to add the follow-

ing line to the controlDict file: geometricGamgAgglomerationLibs 

(“libMGridGenGamgAgglomeration.so”). Other settings related to the 

agglomeration process are as follows. 

• nCellsInCoarsestLevel: This parameter sets the total number of cells for 

the coarsest grid used in the multigrid process. The default value is 10. 

• directSolveCoarsest: This parameter specifies whether to use a direct 

method to solve the linear system associated with the coarsest grid in the multigrid 

process. The default value is false. 

• mergeLevels: This parameter controls the number of grids used in the multigrid 

process by selectively excluding some of the grids generated during the agglom-

eration phase. By setting this parameter to 2, only half of the generated grids will 

be used in the process. In most cases, this parameter is set to 1, and the value 2 is 

used only in the case of very simple starting grids. 

It is possible to set the solver (smoother) used to solve the linear systems associated 

with the various grid levels through the parameter smoother. The possible values 

for this parameter are: 

• GaussSeidel: this method applies the Gauss-Seidel approach to matrices that 

do not have zero values on the main diagonal. It guarantees convergence only for 

diagonal-dominant matrices that are symmetric and positive definite; 

• symGaussSeidel: this method applies the Gauss-Seidel approach specifically 

to symmetric coefficient matrices; 

• DIC/DILU: the method of incomplete diagonal decomposition (DIC) is applied 

to symmetric matrices, while the method of incomplete LU decomposition (DILU) 

is used for non-symmetric matrices; 

• DICGaussSeidel: for symmetric matrices, an iteration performed with the 

DIC method is followed by an iteration with the Gauss-Seidel method to eliminate 

high-frequency errors caused by the DIC iteration. For non-symmetric matrices, an 

iteration with the DILU method is followed by an iteration with the Gauss-Seidel 

method to eliminate high-frequency errors resulting from the DILU iteration.
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The number of iterations to be performed using the chosen smoother is determined 

by the value of the following optional parameters: 

• nPreSweeps: number of iterations to be performed on the grids during the 

coarsening phase (default 0); 

• nPostSweeps: number of iterations to be performed on the grids during the 

refining phase (default 2); 

• nFinestSweeps: number of iterations to be performed on the finest grid. 

6.4 Pressure-Velocity Coupling 

The projection methods implemented in OpenFOAM® are: 

• SIMPLE (Semi-Implicit Method for Pressure-Linked Equations); 

• SIMPLEC (SIMPLE Corrected/Consistent); 

• PISO (Pressure Implicit with Splitting Operators); 

• PIMPLE (hybrid between SIMPLE and PISO). 

The SIMPLE and SIMPLEC methods are implemented for steady-state simulations, 

while PISO and PIMPLE are implemented for transient simulations. 

6.4.1 Implementation of SIMPLE and PISO in OpenFOAM® 

As previously mentioned, in the continuity equation for incompressible flows, 

.∇ · U = 0 (6.4) 

the pressure term is not present. Therefore, in this case, it is impossible to link the 

continuity equation with the conservation of momentum Eq. 2.43 here reported in 

vector form: 

.

∂U

∂t
+ ∇ · (UU) − ν∇2U = −∇ p (6.5) 

whose three components are 

.

∂Ux

∂t
+ ∇ · (UUx ) − ν∇2Ux = −

∂p

∂x
, (6.6) 

.

∂Uy

∂t
+ ∇ · (UUy) − ν∇2Uy = −

∂p

∂y
, (6.7)
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.

∂Uz

∂t
+ ∇ · (UUz) − ν∇2Uz = −

∂p

∂z
. (6.8) 

. U is the fluid velocity, while.Ux (or.Uy or.Uz) is the transported quantity (the. φ of Eq. 

2.38). It should be noted that here the pressure refers to the kinematic pressure, .p/ρ. 

. ν is the kinematic viscosity, which is related to dynamic viscosity by the relation. ν =

μ/ρ. Equations 6.6, 6.7, and 6.8 can each be applied to every cell of the computational 

domain, resulting in the following matrix equations. 

.MxUx = bx , (6.9) 

. MyUy = by,

. MzUz = bz

where .Mx , .My , and .Mz are the coefficient matrices; .Ux , .Uy , and .Uz are the column 

matrices containing the considered component of the velocity corresponding to each 

of the .N cells of the computational domain; . bx , . by , and .bz are the column matrices 

containing the considered component of the pressure gradient corresponding to each 

of the .N cells of the computational domain. Considering only the x component of 

the velocity, Eq. 6.9 is 

. 

⎡

⎢
⎢
⎢
⎣

M11 M12 . . . M1N

M21 M22 . . . M2N

...
... . . .

...

MN1 MN2 . . . MN N

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Ux1

Ux2

...

Ux N

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

(∂p/∂x)1
(∂p/∂x)2

...

(∂p/∂x)N

⎤

⎥
⎥
⎥
⎦

where the terms .Mi j of the coefficient matrix are known. 

It is important to note that the discretisation of the various terms of Eq. 6.5 con-

tributes to determining the value of the elements .Mi j of the coefficient matrix. For 

simplicity, we will refer only to the component .Ux of the velocity from now on. As 

seen in Sect. 3, for the discretisation of the convective term, we can refer to Eq. 3.2. 

If the transported quantity is .Ux , Eq.  3.2 becomes 

. 

∮

∂VP

dS · (ρUUx ) ≈
∑

f

S f · (ρUUx ) f =
∑

f

S f · ρ f U f (Ux ) f =
∑

f

φ f (Ux ) f

(6.10) 

where the mass flow rate .φ f = S f · ρ f U f becomes a volumetric flow rate, . φ f =

S f · U f , in the case of incompressible flow, where the density . ρ is absent. 

For the discretisation of the diffusive term, we refer to Eq. 3.3, which, when the 

diffused quantity is .Ux , becomes: 

..

∮

∂VP

dS · (ρν∇Ux ) ≈
∑

f

S f · (ρν∇Ux ) f =
∑

f

S f ρ f ν f ∇n(Ux ) f
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.S f denotes the magnitude of the vector .S f , and the term .∇n(Ux ) f is the normal 

component of the gradient of .Ux at the centre of the face . f . Considering that 

• .∇ · ∇2U ≡ ∇ · (∇ · ∇U) ≡ ∇2 (∇ · U); 

• the kinematic viscosity is considered constant; 

• the semi-discretised form (i.e., discretised only with respect to time) of the 

momentum Eq. 6.5 is used; 

• the continuity Eq. 6.4 must be satisfied. 

A new equation can be written when calculating the divergence of the momentum 

Eq. 6.5. In this new equation, the pressure term appears: 

. 

✚
✚

✚✚
∇ ·

∂U

∂t
+ ∇ · (∇ · (UU)) −✘✘✘✘✘

∇ ·
(

ν∇2U
)

= −∇2 p

that is 

.∇2 p + ∇ · [∇ · (UU)] = 0 (6.11) 

known as the Poisson pressure equation (see also Sect. 1.3.5). 

The Poisson equation can be better understood by noting that the symbol . UU

represents a second-order tensor: 

. UU =

⎡

⎣

UxUx UxUy UxUz

UyUx UyUy UyUz

UzUx UzUy UzUz

⎤

⎦ .

Note that, since the transport term .∇ · (UU) is present in the Poisson pressure equa-

tion, its discretisation necessarily leads to the calculation of the flux .φ f , as seen 

for the same term in the discretised form of the momentum equation. The system 

composed of Eqs. 6.5 and 6.11 is equivalent to the system of the Navier-Stokes equa-

tions in their incompressible formulation and can be solved by imposing appropriate 

boundary and initial conditions. Specifically, by setting an initial pressure field, a 

velocity field can be calculated through Eq. 6.5 (momentum predictor step), which 

has a non-zero divergence. Through Eq. 6.11, this velocity field can be used to calcu-

late a new pressure field (pressure corrector step). The pressure field thus obtained is 

used to “correct” the velocity field (momentum corrector step) and update the values 

of the fluxes .φ f and the coefficients of matrices .Mx , .My , and .Mz . This sequence 

is executed iteratively until a velocity field with zero divergence is reached, that is, 

until the continuity equation is satisfied with an acceptable error. This procedure is 

also known as pressure-velocity coupling (see also Chap. 5). 

It is now necessary to describe the notation underlying the implementation of the 

SIMPLE algorithm. The terms on the left-hand side of Eq. 6.5 can be represented as 

follows: 

.

∂U

∂t
+ ∇ · (UU) − ν∇2U ≡ AU − H(U)
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in which .A is a constant and .H(U) is a vector which depends on . U and any source 

term not considered here for simplicity. Considering the three components of the 

velocity, it is 

.. AUx − Hx (U) ≡
∂Ux

∂t
+ ∇ · (UUx ) − ν∇2Ux ,

.. AUy − Hy(U) ≡
∂Uy

∂t
+ ∇ · (UUy) − ν∇2Uy,

.. AUz − Hz(U) ≡
∂Uz

∂t
+ ∇ · (UUz) − ν∇2Uz

in which .Hx (U), .Hy(U), and .Hz(U) are the three components of the vector .H(U). 

The momentum conservation Eq. 6.5 can now be written as 

.AU − H(U) = −∇ p (6.12) 

and, considering the three components of the velocity, 

. AUx − Hx (U) = −
∂p

∂x
,

AUy − Hy(U) = −
∂p

∂y
, (6.13) 

AUz − Hz(U) = −  
∂ p 

∂ z 
. 

Applying each of Eq. 6.13 to all cells of the computational domain, three matrix 

equations are obtained: 

.. AxUx − Hx (U) = bx ,

AyUy − Hy(U) = by,

AzUz − Hz(U) = bz

in which.Ax ,.Ay , and.Az are diagonal matrices whose terms are the diagonal elements 

(constants) of the coefficient matrices .Mx , .My , and .Mz , respectively. .Ux , .Uy , and 

.Uz are column matrices containing the corresponding velocity components for each 

cell of the computational domain..Hx (U),.Hy(U), and.Hz(U) are matrices containing 

the corresponding components of the vector .H(U) for each cell of the computational 

domain.. bx ,. by , and.bz are column matrices containing the corresponding components 

of the pressure gradient for each of the .N cells of the computational domain. 

Equation 6.12 can now be rewritten as 

.U =
H(U)

A
−

1

A
∇ p (6.14)
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and, applying the three component equations of this vector equation to all the cells 

of the computational domain, three matrix equations are obtained: 

. Ux =
Hx (U)

Ax

+
1

Ax

bx ,

Uy =
Hy(U)

Ay

+
1

Ay

by, (6.15) 

Uz = 
Hz(U) 

Az 

+ 
1 

Az 

bz 

where . bx , . by , and .bz are still the column matrices containing the considered com-

ponents of the pressure gradient corresponding to each of the .N cells of the com-

putational domain. Equation 6.15 has been written in this way to reflect the imple-

mentation in OpenFOAM® programming language. Nevertheless, Eq. 6.15 has been 

written in this way to highlight the fact that the calculation of the terms .
1

Ax

, .
1

Ay

, and 

.

1

Az

is very simple, since the inverse of a diagonal matrix is a diagonal matrix whose 

elements are each the inverse of the corresponding elements of the initial matrix. 

Referring only to the component in the x direction, it is 

. 

1

Ax

= A−1
x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1

M11

0 . . . 0 0

0
1

M22

. . . 0 0

...
... . . .

...
...

0 0 . . . 0
1

MN N

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

x

.

Referring to (6.14) and noting the definition .φ f = S f · U f of volumetric flow rate 

at the interface, we can write 

.φ f = S f ·

(
H(U)

A

)

f

−

(
S f

A

)

f

∇n p f . (6.16) 

Referring to Eq. 6.14 and noting the definition .∇ · U = 0 of the mass conservation 

equation, the Poisson pressure equation can be written as 

. ∇ ·
1

A
∇ p = ∇ ·

[
H(U)

A

]

.

Given that a Laplacian is present in the pressure equation, as occurs in the discretisa-

tion of diffusive terms, the presence of non-orthogonal grids results in the additional 

term . f (∇ p):



6.4 Pressure-Velocity Coupling 211

.∇ ·
1

A
∇ p = ∇ ·

[
H(U)

A

]

+ f (∇ p) . (6.17) 

Skewness and non-orthogonality of cells imply secondary gradients in every equa-

tion where diffusive phenomena are considered. Noting that the non-orthogonal cor-

rection term (see Sect. 3.3) is solved as a source term and therefore explicitly, the 

values of pressure used to calculate the term . f (∇ p) are always those obtained at the 

actual iteration. To reduce the errors due to secondary gradients, the pressure value 

just obtained from the pressure correction equation is substituted back into the same 

equation, as shown in Figs. 6.21, 6.22, and 6.24, where the non-orthogonal correc-

tors decision block is used to obtain a new and more accurate value of the pressure 

field. By doing so, accuracy and stability are improved at the expense of a significant 

increase in computational cost. In OpenFOAM®, the SIMPLE algorithm is imple-

mented for steady-state calculations only. For non-steady-state calculations, the PISO 

or PIMPLE algorithms are used. The control parameters of the SIMPLE cycle are 

contained in the fvOptions file. The number of executions of the non-orthogonal 

correction cycle is set through the word nonOrthogonalCorrectors present in the 

SIMPLE section of the fvOptions file. When dealing with orthogonal grids, this 

value can be set to zero; otherwise, it cannot be less than 1 and may increase depend-

ing on the quality of the grid. When there is at least one non-orthogonal correction, 

the cycle is called SIMPLEC. 

6.4.1.1 Field and Equation Under-Relaxation 

The use of under-relaxation factors is typical of SIMPLE-type steady-state solvers. 

As  shown in Fig.  6.19, it is possible to distinguish the application of such fac-

tors to a specific quantity (“fields”) from their application to a matrix equation 

(“equations”). In the case of applying them to a generic quantity (for example, 

pressure), these factors are used to control the rate of change of the quantity between 

one iteration and the next (Fig. 6.18): 

. φn
P = φn−1

P + α
(

φn∗

P − φn−1
P

)

where .φn
P is the final value of the quantity at iteration . n in the cell centred at P, 

.φn−1
P is the value of the quantity at iteration .n − 1, and .φn∗

P is the value of the 

quantity at iteration . n before the application of the under-relaxation factor . α. The  

values that this factor can assume range between 0 and 1. High values imply greater 

rapidity but less stability in the calculations, and vice versa. This approach to the 

application of the under-relaxation factor is somewhat inefficient from a memory 

usage perspective because it requires storing the value .φn∗

P in order to calculate .φn
P . 

This method is known as field under-relaxation or explicit under-relaxation. It is  

applied by specifying the quantity for which it is to be used in the “fields” section 

of the relaxationFactors zone in the fvSolution file (see Fig. 6.19). For
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numerical reasons, this approach is required for pressure when using the SIMPLE 

algorithm. 

When under-relaxation factors are applied to a matrix equation, it is referred 

to as equation under-relaxation or implicit under-relaxation. In this approach, the 

coefficients matrix resulting from the discretisation of the equation (for example, the 

conservation equation of the quantity of motion) for the considered quantity, applied 

to all the cells of the computational domain, is modified. Indicating the elements of 

the main diagonal of the coefficients matrix with the symbol .� and the remaining 

elements with the symbol . ∗, it can be written: 

. 

⎡

⎢
⎢
⎣

� ∗ ∗

∗ � ∗

∗ � ∗

∗ ∗ �

⎤

⎥
⎥
⎦

[

φ
]

=

⎡

⎢
⎢
⎣

∗

∗

∗

∗

⎤

⎥
⎥
⎦

in which .
[

φ
]

is the column vector whose elements are the values of the quantity 

. φ corresponding to all the cells of the computational domain. The under-relaxation 

process involves modifying the elements of the main diagonal as follows: 

.� = max (�, sum |∗|) /α (6.18) 

in which the symbol .
∑

|∗| represents the sum of the absolute values of all the off-

diagonal elements in the row to which the element of the main diagonal belongs. It 

can be noted that, as the value of . α decreases, the values of the elements of the main 

diagonal increase, along with the diagonal dominance of the coefficients matrix, thus 

making the inversion process more stable. Subsequently, an additional term is added 

to the column vector of known terms, obtaining: 

.

⎡

⎢
⎢
⎣

� ∗ ∗

∗ � ∗

∗ � ∗

∗ ∗ �

⎤

⎥
⎥
⎦

[

φ
]

=

⎡

⎢
⎢
⎣

∗

∗

∗

∗

⎤

⎥
⎥
⎦

+ [� − �]
[

φn−1
]

(6.19) 

in which .
[

φn−1
]

is the column vector whose elements are the values of the quan-

tity .φ at the previous iteration. Due to the OpenFOAM® implementation of this 

approach, when.α = 1, the elements of the main diagonal are still modified according 

to Eqs. 6.18 and 6.19 to ensure the diagonal dominance of the coefficients matrix. 

For non-stationary cases (PISO or PIMPLE algorithms), it is necessary: 

• to delete all the rows in the fields section of the fvSolution file to avoid 

incorrect results due to the variation of the elements of the main diagonal, which 

have already been modified by the presence of elements related to the time 

derivative (see Sect. 6.1.1);
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Fig. 6.18 Application of the 

under-relaxation factor . α

Fig. 6.19 Setting of the 

under-relaxation factors in 

the case of a solver based on 

the SIMPLE algorithm 

• to set the value of the under-relaxation factors for the quantities listed in 

the equations section to 1, in order to ensure diagonal dominance. In the 

relaxationFactors section of the fvOptions file, it is recommended 

to have only a single row containing the text: ".*" 1; which sets the under-

relaxation value of all the quantities to 1, thus ensuring diagonal dominance without 

under-relaxing (see Fig. 6.26). 

An example of setting such factors in the fvSolution file for stationary cal-

culations with a solver based on the SIMPLE algorithm is shown in Fig. 6.19. 

Figure 6.20 shows the setting of such factors in the case of a solver based on the 

SIMPLEC algorithm. In this case, both field under-relaxation and equation under-

relaxation approaches have been activated. An example of setting such factors for 

non-stationary calculations in the fvSolution file is shown in Fig. 6.26. 

Figure 6.21 shows the SIMPLE algorithm in the form of a flowchart as imple-

mented in OpenFOAM®. The corresponding source code lines are also shown for 

each block of the flowchart. Given an initial velocity field or one resulting from the 

previous iteration, a “momentum matrix” is defined for each of the three components
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Fig. 6.20 Setting of the 

under-relaxation factors in 

the case of a solver based on 

the SIMPLEC algorithm 

relaxationFactors 
{
          fields
          { 

p              0.9;
           }
           equations
           { 

p               1.0;
               U              0.7;
               k               0.7;
               omega    0.7;
            } 
} 

of the velocity, based on the discretised form of the momentum conservation Eq. 6.5, 

excluding the pressure term. 

. MxUx ≡ ∇ · (UUx ) − ν∇2Ux ,

MyUy ≡ ∇ · (UUy) − ν∇2Uy,

MzUz ≡ ∇ · (UUz) − ν∇2Uz .

Subsequently, these matrices are under-relaxed. Given an initial pressure field or 

one resulting from the previous iteration, the following matrix equations are solved 

implicitly (momentum predictor step): 

.MxUx = bx , (6.20) 

MyUy = by, 

MzUz = bz 

in which. bx ,.by and.bz are the column matrices containing the considered component 

of the pressure gradient in each of the.N cells of the computational domain. The result 

is a velocity field . Uwith non-zero divergence. This velocity field allows defining the 

term .H(U) present in the pressure Eq. 6.17, here reported for simplicity. 

. ∇ ·
1

A
∇ p = ∇ ·

[
H(U)

A

]

+ f (∇ p)

which, solved implicitly, provides the new pressure field. The new pressure field can 

be used to update the flow rates on the faces of the cells (flux corrector step) using 

Eq. 6.16, here reported for simplicity. 

.φ f = S f ·

(
H(U)

A

)

f

−

(
S f

A

)

f

∇n p f .
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Fig. 6.21 SIMPLE predictor-corrector process with non-orthogonality correction cycle orthogo-

nality
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To avoid flow rates .φ f not respecting the equation of continuity (represented by the 

pressure equation), the pressure field under-relaxation is performed after the flow 

rates update. With the new pressure field and the updated value of .H(U), the new 

velocity field can be obtained by explicitly solving the three matrix Eq. 6.15. 

. Ux =
Hx (U)

Ax

+
1

Ax

bx ,

Uy =
Hy(U)

Ay

+
1

Ay

by,

Uz =
Hz(U)

Az

+
1

Az

bz .

The entire cycle is repeated until the convergence criteria are met or the maximum 

number of iterations is reached. For implementation reasons, the iteration number 

is referred to as “time” in OpenFOAM®. This cycle is often identified as the outer 

corrector loop. 

When comparing the PISO and SIMPLE algorithms, the main difference is that, 

once the divergence-free velocity field is obtained, it is used to update the term . H(U)

and solve the pressure equation again. This cycle, also called the inner corrector loop, 

is repeated a finite number of times, as specified by the keyword nCorrectors 

(see Fig. 6.22). Once the number of repetitions is completed, the cycle proceeds as 

in the SIMPLE case. 

The control parameters of the PISO cycle in OpenFOAM® are contained in the file 

fvOptions. This algorithm requires at least one correction; however, to improve 

stability and accuracy, the number of corrections can be increased by modifying the 

value associated with the keyword nCorrectors, as shown in Fig. 6.23. In the case 

of a non-orthogonal grid, and to further improve stability, the number of times the 

non-orthogonal correction cycle is executed can be increased by modifying the value 

associated with the keyword nonOrthogonalCorrectors. For orthogonal grids, this 

value can be set to zero, although setting it to 1 can help improve stability. For non-

orthogonal grids, the value cannot be less than 1 and may need to be higher depending 

on the quality of the grid. 

Through the value associated with the keyword momentumPredictor, it is pos-

sible to activate or inhibit the execution of the momentum predictor step necessary 

to calculate the first value of the term .H(U) in the pressure equation. This step is 

activated in the case of flows with a high Reynolds number. Although it helps to 

stabilise the calculation, it is advisable to inhibit the execution of this step in the case 

of weakly convective flows (i.e. those with a low Reynolds number). If this step is 

executed, it is necessary to specify, in the fvOptions file, the linear solver to use 

for all quantities *.Final. For the same quantities, the value of the under-relaxation 

factor should be specified if under-relaxation is necessary. 

In the case of non-stationary calculations, it is useful to stabilise the solution pro-

cess by reducing the time integration step size, possibly also acting on the constraint
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Fig. 6.22 Flowchart of the PISO cycle
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Fig. 6.23 Control 

parameters of the PISO cycle 
PISO 
{
  momentumPredictor  yes;
  nCorrectors  2;
  nNonOthogonalCorrectors 1; 
} 

related to the maximum Courant number (see Sect. 6.4.2) achievable during the cal-

culation. Both the value of the time integration step size and the maximum Courant 

number achievable during the calculation are specified in the controlDict file. 

Reducing these two values increases the value of the time derivative term (.�φ/�t), 

which, in the discretisation process, always appears within the elements of the main 

diagonal of the coefficients matrix. As already seen, increasing the value of the ele-

ments of the main diagonal of the coefficients matrix increases its diagonal dominance 

and, therefore, the stability of the solution process. 

6.4.1.2 Implementation of the PIMPLE Cycle in OpenFOAM® 

This algorithm (also known as PISO with iterative marching—PISO-ITA) differs 

from PISO (also known as PISO with non-iterative marching—PISO-NITA) due to 

the presence of an additional cycle indicated as the “SIMPLE Loop”. Figure 6.24 

presents the PIMPLE algorithm as implemented in OpenFOAM®. The additional 

cycle is useful for stabilising the solution of cases dealing with the simulation of 

complex phenomena (for example, combustion or discontinuities). The additional 

cycle is also useful when it is desirable to maintain large time steps, although it is 

recommended not to have CFL numbers greater than 2. In OpenFOAM®, the control 

parameters of the PIMPLE cycle are contained in the file fvOptions. The number 

of times the “SIMPLE Loop” is executed is determined by the value associated with 

the keyword nOuterCorrectors, as shown in Fig. 6.25. Setting this value to 1 is 

equivalent to using the PISO algorithm. Given the considerable computational load 

resulting from the execution of the “SIMPLE Loop”, usually, the value of 3 is not 

exceeded. 

Also for this algorithm, as in the previous two SIMPLE and PISO, it is possible 

to make use of under-relaxation factors to increase the diagonal dominance of the 

coefficients matrix. Like in PISO, by the value associated with the keyword momen-

tumPredictor, it is possible to activate or inhibit the execution of the momentum 

predictor step (see Figs. 6.24 and 6.25). In the case where such a step is executed, 

it is necessary to specify, in the fvOptions file, the linear solver to use as well as 

the value of the under-relaxation factor for all *.Final quantities. If under-relaxation 

is not to be used, it is possible to leave empty the area related to the keyword relax-

ationFactors. Otherwise, the syntax to set the same under-relaxation factor for all 

quantities is shown in Fig. 6.26. Figures 6.27 and 6.28 show acceptable values of 

under-relaxation factors if SIMPLE or SIMPLEC formulation is used, respectively.
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Fig. 6.24 Flow diagram of the PIMPLE cycle
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Fig. 6.25 Control 

parameters of the PIMPLE 

cycle 

PIMPLE 
{
  momentumPredictor  yes;
  nOuterCorrectors 1;
  nCorrectors  2;
  nNonOthogonalCorrectors 1; 
} 

Fig. 6.26 Setting of the 

under-relaxation factors 
relaxationFactors 
{
          fields
          {

           }
           equations
           {

            } 
} 

Fig. 6.27 Possible values of 

the under-relaxation factors 

for SIMPLE formulation 

relaxationFactors 
{
          fields
          {

           }
           equations
           {

            } 
} 

Fig. 6.28 Possible values of 

the under-relaxation factors 

for SIMPLEC formulation 

relaxationFactors 
{
          fields
          {

           }
           equations
           {

            } 
} 
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6.4.2 The Courant Number 

In transient simulations, the calculation is conducted at successive time values. It 

has been seen that the interval defined by two successive times cannot assume any 

values but must respect the stability criterion of Courant-Friedrichs-Lewy, which is a 

necessary, but not sufficient, condition for the numerical convergence of the solution 

of some partial differential equations (usually, hyperbolic equations). According to 

this criterion, to determine the amplitude of a wave that crosses the computational 

domain by calculating its value at successive times, the interval determined by such 

two times should not be greater than the time the wave takes to cross the single cell. 

In this regard, considering for simplicity a one-dimensional computational domain 

discretised with cells of the same size, it is possible to define the Courant number 

.Co as 

. Co =
u�t

�x

where . u is the flow velocity (the wave propagation velocity), .�t is the time interval, 

and .�x is the extension of the cell. This number expresses the ratio between the 

space travelled by the flow with velocity . u in time .�t and the extension .�x of the 

cell. The stability criterion of Courant-Friedrichs-Lewy—CFL condition—requires 

that.Co ≤ 1 in the case of explicit schemes, while for implicit schemes, this value can 

be greater when an accurate description of the transient is not required. Therefore, 

given a generic computational grid, the CFL condit 

6.4.2.1 Expression of the Courant Number 

In two- or three-dimensional computational domains, the calculation of the Courant 

number is defined as follows. The length .�x is calculated as the ratio between the 

volume .VP—area in the two-dimensional case—of the cell and the sum of the areas 

.A f —lengths in the two-dimensional case—of the faces that define the cell. 

. �x =
VP

∑

f A f

.

As for the velocity, the only component to consider is the one normal to the face. 

Adding the velocity contribution of all the faces bounding the cell would result in a 

zero value due to the validity of the mass conservation equation. For this reason, the 

absolute value of the contribution of each face is summed, and the resulting value 

is halved. By doing so, the following formula is obtained for the calculation of the 

Courant number: 

.Co =
1

2
�t

∑

f |U f · n f |A f

VP
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where .U f is the velocity vector at the centroid of the generic face, and .n f is the unit 

vector normal to the corresponding face. 

6.5 Residual and Tolerances 

As already seen in Sect. 4.5, residuals are a measure of the error made when iteratively 

solving a system of equations. Before solving the matrix equation resulting from 

the application of the discretised form of the considered conservation equation, in 

OpenFOAM®, the residual is calculated based on the known values of the quantities 

involved. At the end of each iteration for the solution of the system, the calculation 

of the residual is performed. Considering the system resulting from the application 

of the momentum conservation equation for the only component along . x to all the 

cells of the computational domain, the residual is calculated as 

.rx =
‖MxUx − bx‖

‖MxUx − MxUx‖ + ‖MxUx − bx‖
. (6.21) 

The numerator of Eq. 6.21 includes the norm of the difference between the left and 

right-hand sides of Eq. 6.20. If the found solution were exact, this value would be 

zero. At the denominator of Eq. 6.21, there is a dimensionless factor ensuring that the 

calculated value for the residuals is not dependent on the scale (i.e., geometric dimen-

sions, module of characteristic velocities, etc.) of the generic problem addressed. 

Indicating with the symbol .Ux the average of .Ux calculated considering all the cells 

of the computational domain, and remembering that the norm .‖bx‖ of the column 

matrix .bx is equal to the sum of the absolute values of each of its elements, the use 

of the dimensionless factor also ensures that the residual is a single number rather 

than a vector of size equal to the total number of cells with which the computational 

domain has been discretised. The iterative process of solving the considered system 

stops in OpenFOAM® if one of the following conditions is verified: 

• the value of the residual is less than that set for the parameter tolerance; 

• the value of the ratio between the current residual and that at the previous iteration 

is less than that set for the parameter relTol; 

• the number of iterations performed is greater than that set for the parameter 

maxIter. 

As seen before, when using algorithms such as PISO or PIMPLE, the matrix equation 

associated with a generic quantity can be solved multiple times within the same 

iteration of the algorithm (PISO/PIMPLE), according to the value assigned to the 

parameter nCorrectors. In these cases, it is necessary to set specific values for 

the stop parameters for the last step of the solution. An example of such a setting, 

relating to the pressure solution equation—similarly it proceeds for velocity—is 

shown in Fig. 6.29, in which the tolerance parameters for the last execution of the 

iterative process are specified in There is a specific section in the fvSolution file
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Fig. 6.29 Tolerance 

parameters for the last 

execution of the iterative 

process 

to specify the tolerance values of the residuals for the final iteration solution. The 

name of this section is the same as the section relating to the intermediate iterations, 

with the addition of the suffix Final. If the value associated with the parameter 

nCorrectors is 4, the instructions in Fig. 6.29 impose that: 

• the first three solutions of the matrix equation of the pressure can be stopped at a 

reduced computational cost for a value of relTol equal to 0.05; 

• for the last solution, greater accuracy is required and, with higher computational 

costs, it will necessarily have to reach the value of the residual equal to . 1e − 06

since the value 0 deactivates the parameter relTol.



Chapter 7 

Boundary Conditions 

Incorrect imposition of boundary conditions can lead to computational instability, 

lack of convergence, and incorrect or inaccurate results. Boundary conditions must 

be specified consistently with various characteristics of the flow, such as the veloc-

ity regime at input and output, interactions with viscous walls, etc. A fundamen-

tal aspect is understanding the mathematical characteristics of the equations that 

describe the flow under consideration, as described in Sect. 1.3. These mathemati-

cal characteristics define how flow properties and disturbances are transported both 

within the computational domain and across its boundaries. Therefore, understanding 

how information propagates in the flow, which aspects enter and which exit through 

the boundaries, is fundamental in selecting the most appropriate boundary condi-

tions consistent with the physical characteristics of the flow and the mathematical 

equations that represent it. In the case of incompressible flow, it has been observed 

that information propagates equally in all directions. Conversely, to understand the 

fundamental concepts underlying the correct imposition of boundary conditions in 

compressible flow, it is necessary to briefly describe the Riemann problem of gas 

dynamics. The Riemann problem is an initial value problem for the Euler equations; 

in the one-dimensional case, the initial condition consists of a jump in the variables 

between two states, with a uniform distribution on the left of the discontinuity and 

another equally uniform distribution on the right (see Fig. 7.1). The solution of the 

Riemann problem depends on the values of the variables in the left and right states. 

The solution generally consists of three distinct waves that propagate at specific 

speeds. In the shock tube problem, the initial discontinuity evolves into three waves. 

The intermediate wave is a contact discontinuity that propagates at the local fluid 

velocity . u. The other two waves propagate at velocities .u − c and .u + c, where . c

is the speed of sound in the fluid under consideration. Referring to Fig. 7.2, in the  

simplest case where the local fluid velocity . u is zero, there will be a rarefaction wave 

propagating in the gas towards the left and a shock wave propagating to the right. 
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Fig. 7.1 Initial condition of 

the Riemann problem 

Fig. 7.2 Structure of the 

solution of the Riemann 

problem in the .x − t plane 

for the one-dimensional 

Euler equation 

Each of these waves follows a characteristic curve (see Sect. 1.3.3):.C0 for the contact 

discontinuity, .C− for the wave propagating at velocity .u − c, and .C+ for the wave 

propagating at velocity .u + c. 

To apply these concepts to boundary condition imposition, a one-dimensional 

compressible flow is considered. Referring to Figs. 7.3, 7.4, and 7.5, the characteristic 

.C− is negative (residing in the negative semi-plane of the abscissas) if the flow 

is subsonic and positive (residing in the positive semi-plane of the abscissas) if 

the flow is supersonic. At the inlet, the characteristics .C0 and .C+ have slopes . u

and .u + c, respectively, and are always positive for a flow directed in the positive 

abscissa direction. Therefore, these two characteristics convey information from 

the exterior to the interior of the computational domain through the boundary. The 

third characteristic, .C−, has a sign that depends on the Mach number: it is positive 

for a supersonic inlet flow and negative for a subsonic inlet flow. It follows that, for 

subsonic inlet flows, information related to the characteristic.C− cannot be specified a 

priori in the boundary condition at the inlet. Similar considerations apply to the outlet 

boundary, where no conditions need to be imposed for the characteristics .C+ and .C0. 

For.C−, a condition must be imposed if the exit flow is subsonic, whereas no condition 

Fig. 7.3 Boundary 

conditions for 

one-dimensional supersonic 

flow
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Fig. 7.4 Boundary 

conditions for 

one-dimensional subsonic 

flow 

Fig. 7.5 Boundary 

conditions for variable 

section unidimensional flow 

is required if the flow is supersonic. Each characteristic conveys information about 

a single variable, and only the variables transported through the boundaries into the 

domain define a physical boundary condition. The remaining variables, transported 

out of the computational domain, are determined by the computed flow itself. In this 

case, numerical boundary conditions are considered, where the necessary information 

is obtained by extrapolation from the downstream flow (for an inlet boundary) or from 

the upstream flow (for an outlet boundary). A boundary cell is a cell with at least one 

face positioned on the boundary of the computational domain; such a face is referred 

to as a boundary face. 

7.1 Boundary Conditions for Incompressible Flow 

The conservation equations of momentum (Eq. 6.5) 

. 

∂U

∂t
+ ∇ · (UU) − ν∇2U = −∇ p

and pressure (Eq. 6.11) 

.∇2 p + ∇ · [∇ · (UU)] = 0
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as reported for simplicity, describe the motion of an incompressible flow. The pressure 

equation combines the conservation equations of momentum and mass and does not 

contain any time derivative term, thus highlighting that, for incompressible flows, 

the speed of sound is infinite (.c = ∞). This means that quantities throughout the 

computational domain are instantaneously influenced by any disturbance at any point 

in the domain. Specifically, the term.∇2 p describes the instantaneous pressure change 

across the computational domain in response to a change in velocity at any single 

point. In turn, the pressure change causes an instantaneous change in the velocity 

field across the domain, which also varies (on finite time scales) due to advection 

and diffusion. 

In transport phenomena, modelling advection terms requires the calculation of 

the face value (.φ f ) by interpolating between the values (. φ) of the same quantity at 

the centres of the two cells sharing the face. For boundary cells at the inlet, there 

is no second cell centre through which to determine the value of the quantity on 

the boundary face. Thus, from a numerical perspective, it is straightforward to set a 

constant value for the considered quantity at these faces. In this context, for incom-

pressible flow, the behaviour of the pressure is particular because the instantaneous 

propagation of pressure disturbances results in the absence of advection. As a con-

sequence, it is not necessary to discretise the advective term for pressure (as it is 

absent) and therefore calculate the pressure at the boundary face of the inlet cell by 

interpolation. For these reasons, it is preferred not to fix the value of pressure at the 

inlet of the computational domain. Instead, the pressure gradient is set at the inlet. 

For the faces of the outlet boundary, the opposite is true: the pressure value is set, 

while the gradient value is set for all other quantities. 

• velocity, and possibly temperature, are imposed at the inlet; 

• for boundaries with a symmetry condition, the gradient in the direction normal to 

the boundary is set to zero for all scalar quantities. Additionally, the component of 

velocity in the direction parallel to the boundary is set to zero, as is the component 

of velocity normal to the boundary; 

• for boundaries with a wall condition, velocity is set to zero, and the normal stress 

at the wall, temperature, and heat flow are prescribed as constant; 

• pressure is imposed on the exit boundary; 

• zero gradient is imposed for the remaining quantities at the outlet. 

The imposition of a velocity value at both the inlet and the outlet results in a 

numerically unstable system. 

7.1.1 The Relative Nature of Pressure 

In incompressible cases where none of the boundaries have a specified pressure 

value, a difficulty arises due to the relative nature of the pressure. This is because, in 

the momentum conservation equation, only pressure gradients appear. In this case,
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Fig. 7.6 Example of setting 

parameters related to the 

reference pressure 

PISO 
{
  nCorrectors  2;
  nNonOthogonalCorrectors 1;
  pRefCell     0;
  pRefValue  0; 
} 

pressure differences are meaningful, whereas absolute pressure values are irrelevant. 

This indeterminacy results in a singular coefficient matrix. Because the coefficient 

matrix is singular, it is not invertible, leading to the failure of the simulation process. 

This problem is resolved by setting the pressure value at a point within the domain. 

This ensures that the pressure values at all other points in the computational domain 

are relative to the set value. 

In OpenFOAM®, this value is set by inserting the entry pRefValue in the 

fvSolution file, within the zone where the parameters of the chosen pressure-

velocity coupling strategy are specified. Figure 7.6 shows an example of how this 

parameter is set. 

The parameter pRefPoint/pRefCell defines the position inside the compu-

tational domain at which the reference pressure is assumed to be equal to the value 

specified by pRefValue. 

7.1.2 Inlet 

At the inlet of the computational domain, three types of boundary conditions are 

typically used: 

1. imposed velocity (magnitude and direction); 

2. static pressure and direction of velocity imposed; 

3. total pressure and direction of velocity imposed. 

7.1.2.1 Imposed Velocity 

The subscript . b indicates the quantities referred to the boundary. In this case, it is: 

• .pb, the pressure to be determined during the simulation execution based on the 

values inside the computational domain; 

• the flow rate .ṁb, uniquely determined; 

• the velocity . vb, imposed. 

The pressure at the boundary is extrapolated from the centroid .C of the considered 

boundary cell: 

.pb = pC + ∇ p
(n)

C · dCb.
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Being .∇ pC the pressure gradient calculated at the centre . C of the considered bound-

ary cell, .∇ p
(n)

C is the component in the direction normal to the considered boundary 

face. .dCb is the vector indicating the distance between the centre of the considered 

boundary cell and the centre of the corresponding boundary face. 

7.1.2.2 Static Pressure and Velocity Direction Imposed 

In this case, the pressure .pb and the versor .ev of the velocity vector are known 

because they are imposed. The magnitude of the velocity can be calculated using the 

continuity equation since the boundary pressure gradient is known, as the pressure 

on the boundary face and in the centroid of the actual cell are known. The velocity at 

the boundary is recalculated at each iteration, consistently modifying the coefficients 

of the momentum equation as in the previous case. 

7.1.2.3 Total Pressure and Velocity Direction Imposed 

In this case, the velocity and the pressure at the boundary are not known, although 

they are linked by the total pressure expression: 

.p0 = p
︸︷︷︸

static pressure

+
1

2
ρv · v

︸ ︷︷ ︸

dynamic pressure

. (7.1) 

The mass flow is calculated using the continuity equation. Knowing the pressure from 

the initial condition or from the value obtained at the previous iteration, the velocity 

is obtained from Eq. 7.1. The velocity is then treated as a condition of fixed velocity 

(that is, Dirichlet boundary condition) by consistently modifying the coefficients in 

the momentum equation. 

7.1.3 Outlet 

Three types of outlet boundary conditions will be considered: 

1. imposed static pressure; 

2. imposed flow rate; 

3. fully developed flow.
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7.1.3.1 Imposed Static Pressure 

In this case, the pressure at the boundary .pb is known because it is imposed while 

velocity and flow rate are not known. It is assumed that conditions of fully developed 

flow and therefore zero velocity gradient in the direction normal to the considered 

boundary are verified. Therefore, the velocity at the boundary is assumed to be equal 

to that at the centroid of the considered boundary element. 

7.1.3.2 Imposed Flow Rate 

In this case, the flow rate is known because it is imposed, while the velocity and 

the pressure at the boundary .pb are not known. Given the incompressibility of the 

flow, imposing the flow rate is equivalent to imposing the component of the velocity 

normal to the boundary. It is assumed that the direction of the velocity is the same 

as that at the centroid of the actual boundary cell. 

7.1.3.3 Fully Developed Flow (Outflow) 

In this case, the velocity gradient in the normal direction is assumed to be zero at 

the outlet, so the velocity at the outlet is assumed to be equal to that at the centroid 

of the considered boundary element. The value of the pressure at the boundary is 

extrapolated from the pressure values and pressure gradient in the centroid of the 

considered boundary element. Particular attention must be paid to the use of this 

boundary condition in relation to the positioning of the boundary itself with respect 

to the gradients of the velocity. As shown in Fig. 7.7, the assumption of zero velocity 

gradient in the direction normal to the outlet would be incorrect in the case where 

the exit boundary is positioned in correspondence with Sects. 1 or 2. 

Fig. 7.7 Positioning of the boundary with respect to the gradients of the quantities representative 

of the considered flow
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7.2 Boundary Conditions for Compressible Flow 

The flow at the inlet can be subsonic or supersonic; the nature of equations changes 

depending on the considered case, going from elliptical to hyperbolic respectively. 

The approach used to solve these equations will be consistently different. 

7.2.1 Subsonic Inlet 

In the case of a subsonic inlet, three types of boundary conditions will be considered: 

1. fixed velocity; 

2. static pressure and fixed velocity direction; 

3. fixed velocity direction and total pressure. 

The last type of boundary condition should be used only when the flow within the 

domain becomes supersonic. 

7.2.1.1 Fixed Velocity 

In this case it will be: .pb to be calculated, .ṁb imposed, .vb imposed. Differently 

from the incompressible case, the density depends on the pressure so the flow rate 

remains unknown. The pressure at the boundary is therefore firstly calculated by 

extrapolation as done for the incompressible case and then, from this, the density is 

deduced. 

7.2.1.2 Static Pressure and Imposed Velocity Direction 

The implementation is similar to that of the incompressible case. 

7.2.1.3 Total Pressure and Imposed Velocity Direction 

In this case, the pressure and velocity are unknown although they result linked by 

the definition of total pressure: 

.p0,b = pb

(

1 +
γ − 1

2
M2

b

) γ
γ−1

(7.2) 

where the subscript . b is used to refer to the conditions on the boundary, while . γ is 

the ratio of specific heats. Finally, .Mb is the Mach number at the boundary:
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.Mb =

√
vb · vb

γRTb

. (7.3) 

Similarly to what has already been done in the incompressible case, it is possible to 

obtain the value of .Mb by setting the value of .p0,b, knowing the value of .pb from 

the initial conditions or from the previous iteration, and using Eq. 7.2. Equation 7.3 

gives the value of .vb since the value of .Tb is obtained from the initial conditions or 

from the previous iteration. It should be mentioned that the boundary condition for 

the energy equation at the inlet consists of specifying the static temperature .Tb or the 

total temperature .T0,b. When the total temperature is specified, at each iteration the 

value of the static temperature is calculated using the formula that defines the total 

temperature: 

. T0,b = Tb +
vb · vb

2cp

.

7.2.2 Supersonic Inlet 

In this case, it is necessary to specify the value of all variables: pressure, velocity, 

and temperature. 

7.2.3 Subsonic Outlet 

In the case of a subsonic exit, two types of boundary conditions are considered: 

1. imposed static pressure; 

2. imposed flow rate. 

7.2.3.1 Fixed Static Pressure 

In this case, flow rate and velocity must be determined. Assuming to be zero the value 

of the velocity gradient, it is possible to extrapolate its value at the boundary from the 

centroid of the cells inside the domain. Even for the calculation of the density (and 

therefore the flow rate) a constant gradient (that is, Neumann) condition is applied 

to the energy equation. 

7.2.3.2 Fixed Flow Rate 

Given the flow rate, it is possible to obtain pressure, velocity and temperature 

by applying the Neumann boundary condition of constant gradient to the energy 

equation.
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7.2.4 Supersonic Outlet 

In this case, the value of none of the variables pressure, density, temperature, velocity 

has to be specified; such values are extrapolated from the values in the centroids of 

the boundary cells of the computational domain. 

7.3 Boundary Conditions Available in OpenFOAM® 

Some of the boundary conditions available in OpenFOAM® will be briefly described. 

7.3.1 Imposition of the Value and Gradient of a Quantity 

at the Boundary 

As seen in Chap. 4, the finite volume method leads to writing a discretised conser-

vation equation for each grid cell. Grouping the equations of all the cells results in 

a system that, in its matrix form can be written as .Aφ = b. In Chap. 3, it was seen 

that the discretised general transport equation contains two elements involving the 

computation of the value of the quantity considered at the centre of the face shared 

by two cells: 

• the advection term. 1 In the case of constant density, the advection term is . ∇ · (uφ)

which, discretised becomes .
∑

f S f · u f φ f . When the density is not constant, the 

advection term is .∇ · (ρuφ) which, discretised becomes .
∑

f S f · (ρu) f φ f ; 

• the Laplacian term. In the case of constant density, the Laplacian term is. ∇ · (Ŵ∇φ)

which, discretised becomes .

∑

f

∣
∣S f

∣
∣Ŵ f ∇nφ f . When the density is not constant, 

the Laplacian term is .∇ · (ρŴ∇φ) and discretised becomes . 
∑

f

∣
∣S f

∣
∣ (ρŴ) f ∇nφ f

in which the symbol .∇nφ f represents the component normal to the face of the 

gradient of the quantity .φ f . 

From what has just been observed, it is clear that, for boundary cells, it is necessary 

to impose, at the corresponding face, both the value of.φ f (to allow the calculation of 

the advective term) and .∇nφ f (to allow the calculation of the Laplacian or diffusive 

term). This process is calledboundary conditions imposition. The boundary condition 

that specifies the imposition of a specific value .φb for the considered quantity is 

called the Dirichlet condition. In OpenFOAM®, the Dirichlet boundary condition is 

indicated by the termfixed value. The boundary condition that specifies the imposition 

of a particular value for .∇nφb (the component normal to the face of the gradient of

1 Volumetric.S f · u f and mass.S f · (ρu) f flows are indicated in OpenFOAM
® with the symbol. φ f

while here the symbol .φ f represents the value of the quantity considered at the centre of the face 

(see also Sect. 6.1.2). 
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the considered quantity) is called the Neumann condition. In OpenFOAM®, it is  

indicated by the term fixed gradient. 

For the calculation of the advective term in the case of the fixed value boundary 

condition, .φ f = φb is set. When the fixed gradient boundary condition is imposed, 

the value of .φ f on the boundary face is set by extrapolating the value of the quantity 

from the cell centre using the gradient .∇nφb set in the boundary condition. For the 

calculation of the Laplacian term, in the case of the fixed value boundary condition, 

the value of .∇nφb is based on the value assumed by the quantity in the cell centre 

and the value imposed for the quantity on the face by the boundary condition. In the 

case of the fixed gradient boundary condition, .∇nφ f = ∇nφb is set. An example of 

the use of these two types of boundary conditions is the case of incompressible flow 

within a duct. In this case, the imposed boundary conditions are: 

• at the inlet: zero value for the gradient (zeroGradient) of the pressure and fixed 

value for all other quantities; 

• at the outlet: fixed value for the pressure and zeroGradient for all other quantities. 

7.3.2 Inlet-Outlet 

There may be cases where it is not possible to uniquely define the flow as outgoing 

or incoming at the boundary, as shown in Fig. 7.8, where: 

• at the upper boundary, the flow is partly outgoing and partly incoming in the 

computational domain; 

• at the thin boundary on the left, the flow is incoming in the computational domain; 

• at the thin boundary on the right, the flow is outgoing from the computational 

domain; 

• the remaining boundaries are walls and are not crossed by flow. 

Naming atmosphere as the upper boundary in Fig. 7.8, in the  p configuration file 

for the boundary and initial conditions of pressure, the lines shown in Fig. 7.9 will 

appear. This boundary condition will ensure that, for those faces where the flow is 

outgoing, the pressure value will be fixed and equal to that specified by the word 

value. For those faces where the flow is incoming with velocity . U, the pressure 

value is calculated according to the following formula: 

. p = p0 −
|U|2

2
.

Since the flow is incompressible, the software identifies . p as the kinematic pressure, 

which is the ratio between pressure and density, explaining the absence of the density 

term on the right-hand side of the above formula.
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Fig. 7.8 Computational domain with a boundary characterised by partly incoming and partly 

outgoing flow 

Fig. 7.9 Example of total 

pressure boundary condition 

configuration 

atmosphere 
{
  type     totalPressure;
  p0              uniform  0;
  value        uniform  0; 
} 

Fig. 7.10 Example of 

boundary condition 

configuration for velocity 

atmosphere 
{
  type     pressureInletOutletVelocity;
  value        uniform  (0 0 0); 
} 

In the U configuration file for the boundary and initial conditions of velocity, the 

lines shown in Fig. 7.10 will appear. This boundary condition will ensure that, for 

those faces where the flow is outgoing, a zero gradient boundary condition is set for 

the velocity; for those faces where the flow is incoming, a zero value will be set for 

the velocity component parallel to the boundary and a zero gradient for the velocity 

component orthogonal to the boundary. 

The tutorial incompressible/pimpleFoam/RAS/flowWithOpen 

Boundary, available in the version downloaded from the website 

www.openfoam.org, demonstrates how to handle a boundary where the flow is 

Fig. 7.11 Example of 

boundary condition 

configuration for the 

temperature 

atmosphere 
{
  type            inletOutlet;
  inletValue   uniform 0;
  value           uniform  0; 
} 

http://www.openfoam.org
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partly outgoing and partly entering the computational domain. In this tutorial, the 

transport of temperature is also considered. In the T configuration file for the bound-

ary and initial conditions of temperature, the lines shown in Fig. 7.11 appear. This 

boundary condition ensures that, for those faces where the flow is outgoing, a bound-

ary condition with zero gradient (zeroGradient) is set for the temperature. For 

those faces where the flow is incoming, a zero value will be set for the temperature. 

For any other scalar quantity involved in the simulation, this type of boundary 

condition must be used.



Chapter 8 

Turbulence 

Turbulence is a phenomenon that arises from the instability of laminar flow caused 

by the amplification of disturbances due to strongly non-linear inertial effects. 

The universally accepted theory is that developed by Kolmogorov, known as the 

energy cascade. According to this theory, a turbulent flow consists of vortices of 

various sizes, each associated with a different energy level. Figure 8.1 presents a 

schematic, referred to as the energy density spectrum, which illustrates the energy 

levels of turbulent vortices as a function of the inverse of their sizes. 

The energy level of turbulent vortices is represented by the turbulent kinetic energy 

density, denoted by the symbol . E . The inverse of the size of turbulent vortices is 

called the wave number and is typically denoted by the symbol . κ. Although very 

similar, this symbol differs from . k, which represents turbulent kinetic energy. It may 

be useful here to distinguish between the concept expressed by the word vortex and 

that of the word “eddy” (turbulent vortex). In the context of turbulence, we generally 

refer to eddies where turbulent vortices break down into smaller turbulent vortices, 

giving rise to the phenomenon known as the energy cascade. The term vortex is used 

when describing more stable structures whose physics does not necessarily involve 

turbulence, meaning they are not expected to decay into smaller vortices. 

The size of larger turbulent vortices is typically comparable to the dimensions 

of the objects that confine the flow. These larger eddies progressively break down 

into smaller eddies with lower energy levels, continuing this process until they reach 

scales small enough that molecular viscosity can dissipate kinetic energy into thermal 

energy. At the smallest scales, local velocity gradients become sufficiently high to 

generate significant viscous stress, even when fluid viscosity is low (see the concept 

of turbulent kinetic viscosity discussed below). 

The Navier–Stokes equations can describe the energy cascade phenomenon, pro-

vided that temporal and spatial integration scales are chosen to resolve phenomena at 

the smallest relevant scales. This approach is known as Direct Numerical Simulation 

(DNS). 
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Fig. 8.1 Kolmogorov’s 

energy density spectrum 

The DNS approach entails computational costs that are prohibitive in most prac-

tical cases due to the need for extremely small temporal and spatial integration 

intervals. 

The random fluctuations inherent in turbulence, combined with the wide range of 

temporal and spatial scales involved, have necessitated the use of statistical analysis 

techniques to mitigate the challenges of DNS. One such technique is known as Large 

Eddy Simulation (LES), which identifies larger vortices through spatial statistical 

analysis and simulates them, while modelling the smaller vortices. 

Computational cost can be further reduced using the Reynolds Averaged Navier– 

Stokes (RANS) technique, which applies temporal rather than spatial statistical anal-

ysis. This remains the most widely used approach, as it provides acceptable results 

in most cases while requiring significantly less demanding computational grids and 

temporal integration intervals compared to DNS or LES. 

8.1 Reynolds Averaged Navier–Stokes Approach 

This technique is based on using the time-averaged values of velocity, pressure, and 

temperature in the Navier–Stokes equations. Referring to Fig. 8.2, these quantities 

are decomposed into their mean (. v, . p, . T ) and fluctuating (. v′, . p′, . T ′) components: 

.

v = v + v′,

p = p + p′,

T = T + T ′,

v = ui + vj + wk,

v′ = u′i + v′j + w′k.
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Fig. 8.2 Example of 

instantaneous velocity 

values, average velocity and 

fluctuations 

We will now consider the Navier–Stokes equations written for the case of an 

incompressible flow with constant viscosity, and in the absence of body forces and 

energy sinks or sources. 

. 

∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρvv) = −∇ p + ∇ · τ ,

∇ ·
(

ρcpT
)

+ ∇ ·
(

ρcpvT
)

= ∇ · (k∇T ) + ρT
Dcp

Dt

The substitution of time-averaged values of velocity, pressure, and temperature leads 

to the Reynolds-averaged Navier–Stokes (RANS) equations: 

.

∇ · (ρv) = 0,

∂

∂t
(ρv) + ∇ · (ρvv) = −∇ p + ∇ ·

(

τ − ρv′v′
)

,

∇ ·
(

ρcpT
)

+ ∇ ·
(

ρcpvT
)

= ∇ ·
(

k∇T − ρcpv′T ′
)

+ ρT
Dcp

Dt

(8.1) 

These equations are similar to the original Navier–Stokes equations but differ in 

key aspects. In the case of the momentum conservation equation, an additional term, 

.ρv′v′, appears alongside the stress tensor . τ . This additional term is known as the 

Reynolds stress tensor. 

. τ
R = −ρv′v′ = −ρ

⎛

⎝

u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′

⎞

⎠

which, in the three-dimensional case, introduces six new unknowns. Indeed, 

considering that 

.u′v′ = v′u′ u′w′ = w′u′ v′w′ = w′v′
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Fig. 8.3 A fluid element 

within the turbulent 

boundary layer of 

momentum 

Fig. 8.4 Gradient of mean 

velocity 

Fig. 8.5 Gradient of the 

fluctuating component of 

velocity 

we obtain the symmetric tensor 

. τ
R = −ρ

⎛

⎝

u′u′ u′v′ u′w′

v′v′ v′w′

w′w′

⎞

⎠ .

To better understand the physical meaning of the Reynolds stress tensor, consider 

the fluid element within a two-dimensional turbulent flow within the boundary layer, 

as shown in Fig. 8.3. The shear stress acting on this generic fluid element can be 

divided into two components: one due to the gradient of the mean velocity and the 

other due to the gradient of the fluctuating velocity component. 

The component of the shear stress due to the gradient of the mean velocity (see 

Fig. 8.4) is given by the term . τ in Eq. 8.1; the component of the shear stress due 

to the gradient of the fluctuating velocity component (see Fig. 8.5) is given by the 

Reynolds stress tensor in Eq. 8.1, .τ R = −ρv′v′.
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In the case of the energy conservation equation, an additional term . ρcpv′T ′

appears. This term is known as the turbulent heat flux vector 

. q̇R = −ρcp

⎛

⎝

u′T ′

v′T ′

w′T ′

⎞

⎠

which, in the three-dimensional case, introduces three new unknowns. 

The calculation techniques used to determine the values of these new unknowns 

are referred to in the literature as turbulence modelling. 

Attempting to use the Navier-Stokes conservation equations directly to determine 

these unknowns would introduce even more unknowns, resulting in a not-closed 

system where the number of equations is lower than the number of unknowns. For 

this reason, any turbulence model must be capable of representing the non-linear 

fluctuation components described by the Reynolds stress tensor, as well as the three 

components of the turbulent heat flux, in terms of the mean components. 

One possibility for obtaining information about the fluctuation components from 

the mean ones is provided by the Boussinesq hypothesis. 1 In this context, it is impor-

tant to recall Newton’s law of viscosity, which states that the shear stress is propor-

tional to the velocity gradient, with the proportionality constant being . μ, known as 

dynamic viscosity (see Sect. 2.5.1). The underlying observation of the Boussinesq 

hypothesis is that, even in turbulent flows, there is momentum transport between 

layers of fluid characterised by different mean velocities (i.e., particles in layers 

with higher mean velocities “drag” or accelerate particles in layers with lower mean 

velocities, and vice versa). The Boussinesq hypothesis states that the elements of 

the Reynolds stress tensor are a linear function of the gradient of the mean velocity 

proportional to the constant . μt . This relationship is expressed in vector notation as 

.τ R = −ρv′v′ = μt

[

∇v + (∇v)T −
1

3
(∇ · v)

]

−
2

3
ρkI (8.2) 

or, using tensor notation (see Eq. 2.23), as 

.τ R
i j = −ρv′

iv
′
j = μt

[

∂vi

∂x j

+
∂v j

∂xi

−
1

3

∂vk

∂xk

δi j

]

−
2

3
ρkδi j (8.3) 

where .i, j = 1, 2, 3, .δi j is the Kronecker delta (.δi j = 1 when .i = j , .δi j = 0 when 

.i �= j). In this context we employ the convention of repeated indices (see Sect. 1.1.5) 

where, when .i = j , 

.

∂vk

∂xk

=
∂v1

∂x1
+

∂v2

∂x2
+

∂v3

∂x3
=

∂u

∂x
+

∂v

∂y
+

∂w

∂z
.

1 Joseph Boussinesq, Essay on the theory of running waters, Paris, National Printing Office, 1877. 



244 8 Turbulence

Referring to the strain rate tensor (see Sect. 1.2.1), defined in tensor notation as 

. Si j =
1

2

(

∂vi

∂x j

+
∂v j

∂xi

)

and in particular to its deviatoric part 

. S∗
i j =

1

2

(

∂vi

∂x j

+
∂v j

∂xi

−
1

3

∂vk

∂xk

δi j

)

it is possible to write Eq. 8.3 as 

. τ R
i j = −ρv′

iv
′
j = 2μt S∗

i j −
2

3
ρkδi j .

In the incompressible case, Eq. 8.2 becomes 

. τ R = −ρv′v′ = μt

[

∇v + (∇v)T
]

−
2

3
ρkI

or, using tensor notation, as 

. τ R
i j = −ρv′

iv
′
j = μt

[

∂vi

∂x j

+
∂v j

∂xi

]

−
2

3
ρkδi j

where . k is the turbulent kinetic energy per unit mass defined as 

.k =
1

2
v′ · v′ =

1

2

(

u′u′ + v′v′ + w′w′
)

. (8.4) 

The presence of the term .− 2
3
ρkI or equivalently, the term .− 2

3
ρkδi j is necessary 

to ensure that the expression of the Reynolds stress tensor is consistent with the 

definition of turbulent kinetic energy. Specifically, this term allows the sum of the 

normal stresses, or the sum of the elements of the main diagonal of the Reynolds 

stress tensor, to equal the turbulent kinetic energy as defined in Eq. 8.4. 

.μt is the proportionality constant between Reynolds stresses and the gradients of 

the mean velocity component..μt is called turbulent dynamic viscosity or eddy viscos-

ity. As .μt increases, for a given mean velocity gradient, the transport of momentum 

between fluid particles with different mean velocity values also increases. It is also 

noted that: 

• .μt is not a characteristic of the fluid itself, but rather of the specific flow being 

considered; 

• .μt is a mathematical abstraction whose value must nonetheless be determined.
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. I is the identity matrix of order three. Under the Boussinesq hypothesis, the problem 

of calculating the Reynolds stress tensor is therefore reduced to determining the 

kinetic energy and turbulent viscosity. 

Similarly, turbulent thermal fluxes are calculated in analogy with Fourier’s law: 

. q̇R = −ρcpv′T ′ = kt∇T

where .kt denotes the turbulent thermal diffusivity. 

It is noted that: 

1. there are turbulence models that do not rely on the Boussinesq hypothesis, among 

which are the Reynolds Stress models; 

2. models based on the Boussinesq hypothesis are used in the LES approach, 

including the Smagorinsky model and the Smagorinsky dynamic model. 

Turbulence models that are based on the Boussinesq hypothesis are known as eddy 

viscosity models and can be divided into four main categories: 

• algebraic models (zero-equation models); 

• one-equation models; 

• two-equation models; 

• second-order closure models. 

Each class has a specific scope of applicability relative to the type of flow considered. 

Algebraic models use algebraic equations to calculate. μt , thus avoiding the need to 

solve differential equations. One-equation models involve solving a single differen-

tial transport equation for turbulent viscosity. Two-equation models involve solving 

two differential transport equations to calculate turbulent viscosity. The second-order 

closure models are the most computationally demanding as they solve six different 

transport equations, one for each component of the turbulent flow. The most widely 

used class is the two-equation models as they represent the best compromise between 

computational cost and accuracy of results. 

It should be noted, finally, that turbulence models based on the Boussinesq hypoth-

esis tend to provide inaccurate results in cases where the underlying assumptions may 

be unverified. Specifically, this occurs in the case of shock jets, as well as flows in 

ducts characterised by strong curvature or sudden changes in section. 2

OpenFOAM® has the ability to perform calculations using one of the available 

turbulence models, among which there are: 

• LRR: Launder, Reece and Rodi Reynolds-stress; 

• RNGkEpsilon: Renormalisation group k-epsilon; 

• SpalartAllmaras: Spalart-Allmaras one-equation; 

• kEpsilon: standard k-epsilon;

2 T.J. Craft et al., Impinging jet studies for turbulence model assessment—II. An examination of the 

performance of four turbulence models, International Journal of Heat and Mass Transfer, Elsevier, 

1993. 
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• LaunderSharmaKE: k-epsilon modified by Launder and Sharma to also model 

the zones (near the walls) with a low Reynolds number; 

• SSG: Speziale, Sarkar and Gatski based on the calculation of the Reynolds stress 

tensor; 

• kOmega: standard k-omega; 

• kOmegaSST: k-omega-SST (Shear Stress Transport); 

• kOmegaSSTLM: 4-equation model of Langtry-Menter based on the k-omega-

SST model; 

• kOmegaSSTSAS: “Scale-Adaptive-Simulation” model based on k-omega-SST; 

• laminar: laminar; 

• realizableKE: Realizable k-epsilon; 

• qZeta: Gibson and Dafa’Alla’s two-equation q-Zeta model. 

8.1.1 Standard .k − ǫ Model 

In this model, the turbulent viscosity and thermal diffusivity are expressed as 

. 

μt = ρCμ

k2

ǫ
,

kt =
cpμt

Prt

.

From the expression of the turbulent viscosity . μt , it is noted that it is necessary to use 

a transport differential equation for each of the two terms: the turbulent kinetic energy 

. k and the dissipation of turbulent kinetic energy per unit of mass and time . ǫ, owing  

to viscous stresses. In other words, . ǫ is the rate of transformation of turbulent kinetic 

energy into thermal energy per unit of mass and time due to molecular viscosity. To 

simplify the notation, we have eliminated the bar that indicates average quantities. 

The two equations used in this model are as follows: 

• the transport equation of turbulent kinetic energy, . k

. 

∂ρk

∂t
+ ∇ · (ρvk) = ∇ ·

(

μe f f,k∇k
)

+ Pk − ρǫ;

• the empirical equation for the transport of the rate of dissipation of turbulent kinetic 

energy per unit of mass, . ǫ

. 

∂ρǫ

∂t
+ ∇ · (ρvǫ) = ∇ ·

(

μe f f,ǫ∇ǫ
)

+ Cǫ1

ǫ

k
Pk − Cǫ2ρ

ǫ2

k

The following values are assigned empirically: .Cǫ1 = 1.44, .Cǫ2 = 1.92, .Cμ = 0.09, 

.σk = 1, .σǫ = 1.3, the turbulent Prandtl number .Prt = 0.9. The compact form of the 

.Pk term, representing the production of turbulent kinetic energy, is given by
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. Pk = τ R · ∇v.

The terms .μe f f,k and .μe f f,ǫ represent the effective viscosity which is the result of the 

sum of the fluid molecular viscosity and the turbulent viscosity of the flow. These 

terms are given by 

. μe f f,k = μ +
μt

σk

, μe f f,ǫ = μ +
μt

σǫ

.

Since this model was initially designed to describe external flows in the absence of 

adverse pressure gradients (pressure gradients opposite to the flow velocity direction), 

with high Reynolds numbers and fully developed turbulence, it will provide the best 

results for such flows. 

It is now possible to define the Reynolds number of the turbulence as: 

. Reτ =
k2

ǫν

in which the turbulent kinetic energy .k ∼ u2 (where the symbol .∼ denotes “same 

order of magnitude”) represents the velocity scale . u of the turbulent vortices, while 

the dissipation term . ǫ characterises the scale . l of the turbulent vortices, given by 

.ǫ ∼ u3

l
. 

The standard .k − ǫ model belongs to the class of turbulence models known as 

high Reynolds number turbulence models. In cases where turbulent phenomena occur 

near a contour where the velocity is set to zero (such as a wall), it is necessary to 

modify the standard .k − ǫ model appropriately to ensure it provides accurate results 

in the vicinity of the wall, where the Reynolds number of the turbulence is lower. In 

general, turbulence models that are able to correctly describe the wall behaviour are 

called low Reynolds number turbulence models. This designation also applies to low 

Reynolds number versions of generic turbulence models, such as the one proposed 

by Launder and Sharma. 3 In the specific case of the .k − ǫ model, damping functions 

are introduced. Damping functions modify the values of the constants .Cǫ1, .Cǫ2, and 

.Cμ depending on the distance from the wall. 

8.1.2 .k − ω Model 

In place of dissipation of turbulent kinetic energy . ǫ, this model introduces the . ω

rate of energy conversion from turbulent kinetic energy to internal energy per unit 

volume and time. The use of this parameter allows for a better description of flows 

where there is an adverse pressure gradient resulting in boundary layer separation.

3 B.E. Launder and B.I. Sharma, Application of the energy-dissipation model of turbulence to the 

calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, Vol. 1, pp. 131–138, 

1974. 
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The term . ω is defined as 

.ω =
ǫ

Cμk
. (8.5) 

As in the case of the .k − ǫ model, two equations are solved here, one for . k: 

.

∂ρk

∂t
+ ∇ · (ρvk) = ∇ ·

(

μe f f,k∇k
)

+ Pk − β∗ρkω (8.6) 

and one for . ω: 

.

∂ρω

∂t
+ ∇ · (ρvω) = ∇ ·

(

μe f f,ω∇ω
)

+ Cα1

ω

k
Pk − Cβ1ρω2 (8.7) 

in which 

. μe f f,k = μ +
μt

σk1

μe f f,ω = μ +
μt

σω1

.

The following values are empirically assigned:.Cα1 = 5/9,.Cβ1 = 0.075,.β∗ = 0.09, 

.σk1 = 2, .σω1 = 2, the turbulent Prandtl number .Prt = 0.9. The turbulent viscosity 

and thermal diffusivity are defined as 

. 

μt = ρ
k

ω
,

kt =
μt

Prt

.

The advantages of using . ω instead of . ǫ are all related to its equation that: 

• is more easily integrable; 

• is able to correctly describe the turbulent phenomenon even near a wall; 

• provides satisfactory results even in the presence of adverse pressure gradients. 

The weakness of this turbulence model is the extreme sensitivity of the results to 

the undisturbed flow values set as boundary conditions for . ω. This problem does not 

affect the .k − ǫ model. 

8.2 .k − ω SST (Shear Stress Transport) Model 

This model derives from the one known as Baseline .k − ω (.k − ω BSL) which 

attempts to combine the positive aspects of both.k − ǫ and.k − ωmodels. Specifically, 

from the .k − ω model, this model tries to exploit 

• the stability in handling flow areas close to the walls due to the low Reynolds 

number formulation;
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• the ability to correctly describe flows characterised by the presence of adverse 

pressure gradients. 

From the .k − ǫ model, this model tries to exploit: 

• the ability to correctly process turbulent flows in areas far from the walls; 

• the insensitivity to the value set for the undisturbed flow. 

In the .k − ω BSL model, starting from the .k − ω model, the Eq. 8.7 for . ω is initially 

modified as 

. 

∂ρω

∂t
+ ∇ · (ρvω) = ∇ ·

(

μe f f,ω∇ω
)

+ Cα2

ω

k
Pk − Cβ2ρω2 + 2σω2

ρ

ω
∇k · ∇ω

(8.8) 

also modifying the value of the constants as follows: .Cα2 = 0.4404, .Cβ2 = 0.0828, 

.σk2 = 1, .σω2 = 0.856, .Prt = 0.9. Subsequently, a weighting function .F1 is intro-

duced to obtain a weighted average .�̃ of the value of the constants according to 

the 

. �̃ = F1�1 + (1 − F1)�2

where .�1 is the value of the constant assumed in the original .k − ω model and . �2

is the value of the constant assumed in Eq. 8.8. The weighting function .F1 depends 

on the distance .d⊥ of the considered point from the nearest wall and it is defined as 

. F1 = tanh
(

γ4
1

)

with 

. γ1 = Min

[

Max

( √
k

β∗ω (d⊥)
,

500ν

(d⊥)2 ω

)

,
4ρσω2k

C Dkω (d⊥)2

]

and

C Dkω = Max

(

2ρσω2

1

ω
∇k · ∇ω, 10−10

)

and so 

. μt = ρ
k

ω
, kt =

μt

Prt

, μe f f,k = μ +
μt

σ̃k

, μe f f,ω = μ +
μt

σ̃ω

,

where .ν = μ/ρ denotes the kinematic viscosity of the fluid. So far, the .k − ω BSL 

model has been described from which the .k − ω SST model is derived. The first 

difference between these two models concerns the definition of the turbulent viscosity 

that is modified in the .k − ω SST model according to 

.μt =
ρa1k

Max
(

a1ω,
√
2St F2

)
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in which .a1 = 0.31, .St =
√
St · St is the modulus of the stress defined as . St =

1
2

(

∇v + ∇vT
)

and .F2 is a weighting function defined as 

. F2 = tanh
(

γ2
2

)

and γ2 = Max

(

2

√
k

β∗ω (d⊥)
,

500ν

(d⊥)2 ω

)

.

The equations for . k and for . ω are the same as for the BSL model as well as identical 

is the use of the function .F1 and its definition. The second difference between the 

BSL and the SST model is in the production of turbulent kinetic energy term .Pk in 

Eq. 8.6 of . k which is replaced by 

. P̃k = Min (Pk, c1ǫ)

in which . ǫ is obtained from Eq. 8.5. The constants used in function .F1 to obtain the 

.k − ω SST model constants are 

. 

Cα1 = 0.5532, Cβ1 = 0.0750, σk1 = 2, σω1 = 2

Cα2 = 0.4404, Cβ2 = 0.0828, σk2 = 1, σω2 = 1.186

The constants of the model are .β∗ = 0.09, .c1 = 10, .Prt = 0.9. Finally, the 

expressions of . k and . ω use the effective turbulent viscosities calculated as 

. kt =
μt

Prt

, μe f f,k = μ +
μt

σ̃k

, μe f f,ω = μ +
μt

σ̃ω

.

8.3 The Boundary Layer 

The momentum boundary layer is that portion of fluid in contact and close to a solid 

surface. In this area, in fact, the transition occurs between the undisturbed outer flow 

and the much slower one in contact with the solid wall. By convention, the thickness 

of the boundary layer (see Fig. 8.6) is defined as the portion of fluid whose velocity 

differs by .1% from the velocity of the undisturbed fluid (asymptotic velocity). The 

boundary layer originates where the solid surface begins. As shown in Fig. 8.6, the  

thickness of the boundary layer is divided into four zones: 

• the viscous or laminar sublayer where there are no turbulent fluctuations; 

• transitional sublayer; 

• the fully turbulent region, also known as the logarithmic law region; 

• the outer layer. 

Using a specific law, the velocity profile can be described for each of these regions 

as the distance from the wall increases. Figure 8.7 shows the graph of the profile 

of the average value of the velocity component . u parallel to the wall as a function
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Fig. 8.6 Momentum boundary layer 

Fig. 8.7 velocity as a function of the distance from the wall in dimensionless units 

of the distance .d⊥ from the wall itself. In this graph, the distance from the wall 

and the velocity are represented in dimensionless form. The distance from the wall, 

shown on a logarithmic scale in Fig. 8.7, is indicated by the symbol .y+ and it is 

adimensionalised as: 

.y+ =
d⊥uτ

ν
(8.9) 

where .uτ is referred to as shear or friction velocity defined as 

.uτ =

√

|τw|
ρ

(8.10)
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where .τw is the magnitude of wall shear stress. Denoted by .u+, the adimensional 

velocity is defined as: 

. u+ =
u

uτ

.

In Fig. 8.7 the result of experimental observations is represented by the curve with 

the thicker line, which, in the laminar sub-layer, is in good agreement with the law 

.u+ = y+ and appears curvilinear due to the representation on a logarithmic scale. 

The laminar sub-layer extends up to a distance equal to .y+ = 5. In the logarithmic 

region, characterised by values of .y+ greater than 30, and in the outer layer, the 

logarithmic law 

.u+ =
1

κ
log(y+) + B =

1

κ
log(Ey+) (8.11) 

approximates the data observed experimentally in an acceptable manner. The constant 

.κ ≈ 0.4 is known as the von Karman constant, while .B ≈ 5.5 (.E ≈ 0.98) decreases 

as the roughness of the wall increases, according to empirical laws. Values of . y+

between 5 and 30 bound the transitional sub-layer, in which both of these laws 

approximate the data observed experimentally with lesser accuracy. 

A first approach to correctly describe the velocity profile within the boundary 

layer involves the use of: 

• a large number of cells to allow the correct resolution of strong gradients; 

• a turbulence model capable of correctly describing the laminar sub-layer as well 

as the logarithmic region (the aforementioned low Reynolds number turbulence 

models such as the .k − ω or the .k − ω SST). 

In this first approach, the laminar sub-layer is certainly correctly resolved. The 

centre of the first cell near the wall must have .y+ ⋍ 1, and there is a real risk of 

obtaining computational grids with a number of cells that would result in prohibitive 

computational costs. 

A second approach for calculating the velocity profile within the boundary layer 

involves: 

• the use of so-called wall functions, i.e., the modelling of the velocity profile within 

the boundary layer rather than its actual resolution; 

• the possibility of using a high Reynolds number turbulence model such as the 

.k − ǫ model. 

In this second approach, the centre of the first cell near the wall must have .y+ > 30. 

It is assumed that the velocity profile from the first cell centre near the wall is the 

one shown in Fig. 8.7. Based on this assumption, the gradient of velocity normal 

to the wall is calculated and consequently the shear stress. This type of approach 

allows the use of computational grids with a reduced number of cells. However, 

assuming the profile in Fig. 8.7 is not necessarily correct, for example, in the case 

of flow separation. Particular attention should be paid to the analysis of .y+ values. 

The presence of regions within the computational domain characterised by values
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between 5 and 30 should be avoided due to the low reliability of wall functions 

resulting from the direct resolution of the laminar sub-layer avoidance. 

8.4 Wall Functions 

In cases where the approach involving the modelling of the velocity profile within 

the boundary layer, rather than its actual resolution, is chosen, particular attention 

should be paid to determining the wall velocity gradient. This requires examining its 

definition. 

. τw ≡ μ

(

∂u

∂y

)

y=0

,

It is clear that the wall shear stress .τw is a function of the wall velocity gradient, as 

well as the distance . y from the wall, as shown in Fig. 8.8. In this regard, it is crucial 

to determine the value .y+
p of the centre of the first cell near the wall to identify the 

zone of the boundary layer in which it is located. With reference to Fig. 8.8 and 

formula 8.9, a possible approach involves considering 

. y+
p =

uτ

ν
d⊥ =

C1/4
μ

√

kp

ν
yp

In this context, .kp represents the turbulent kinetic energy calculated at the cell centre 

. p, based on the corresponding velocity value. The threshold values for this quantity 

typically range between 11 and 12: lower values indicate that the cell centre . p lies 

within the laminar sub-layer, while higher values suggest that it is located in the 

transitional sub-layer or the logarithmic region. Figure 8.8 illustrates this. 

• The centre . p of the cell, whose extension is represented by the shaded area; 

• The centre of the face on which the no-slip boundary condition is applied; 

• The value of the velocity component . u parallel to the wall at the cell centre, 

obtained from the application of the equation of conservation of momentum; 

• The real velocity profile, represented by the continuous thin line; 

• The velocity gradient at the centre of the wall face (.y = 0) as the slope of the seg-

ment with a dotted line, considering a simple linear approximation of the velocity 

values at the cell centre and at the wall face centre. Assuming a stationary wall, 

the velocity at the wall face centre is zero; 

• The velocity gradient calculated at the centre of the wall face (.y = 0) as the slope 

of the tangent—dashed segment—to the velocity profile at the centre of the wall 

face; 

• The difference between the value of the gradient calculated with the linear approx-

imation and the value of the gradient obtained as a tangent to the velocity profile, 

represented by a thick continuous line. 

From Fig. 8.8 it is therefore evident that



254 8 Turbulence

Fig. 8.8 Wall velocity 

gradient 

. τw ≡ μ

(

∂u

∂y

)

y=0

�= μ
�u

�y
= μ

u p

yp

.

Choosing the linear approximation to express of the gradient of wall velocity as 

done for all of the interior faces of the computational domain, two approaches are 

possible: 

• The addition of a specific source term in the equation of conservation of 

momentum; 

• Considering a different value of viscosity .μe (effective viscosity) to correct the 

error made in the calculation of the wall velocity gradient. 

8.5 Distance from the Wall to the Centre of the First Cell 

Near the Wall 

During the grid construction phase, it is necessary to determine the value to use for 

the distance from the wall to the centre of the first cell near the wall, so that the 

desired .y+ value is obtained once the simulation is completed. Positioning the centre 

of the first cell near the wall in such a way that the corresponding .y+ value matches 

the desired one is an iterative process and involves the following steps: 

1. Initial estimate of the distance from the wall to the centre of the first cells; 

2. Execution of the simulation and measurement of the obtained .y+ value. If the 

obtained values are acceptable, the process stops; if the obtained values are not 

acceptable, proceed to the next step; 

3. Modification of the grid to move the centre of the first cells based on the values 

obtained in the previous step; 

4. Return to step 2.
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In this process, the initial estimate of the distance from the wall to the centre of the 

first cell can be obtained by calculating the free-flow Reynolds number for the actual 

case. 

. Re =
ρu∞L

μ

where .u∞ is the free-stream velocity. Then, calculate the friction coefficient .C f for 

a flat plate of infinite dimensions. 

. C f = 0.58Re−0.2.

Knowing the value of the friction coefficient, it is possible to calculate the wall shear 

stress as follows: 

. τw =
1

2
C f ρu2

∞

This allows the deduction of the slip velocity. 

. uτ =
√

τw

ρ
.

Finally, from the definition of .y+, 

. y+ =
yuτ

ν

it is 

. y =
μy+

ρuτ

which is the distance from the wall to the centre of the first cell. 

8.6 Wall Functions in OpenFOAM® 

Based 4 on the type of calculation performed, the wall functions in OpenFOAM® can 

be classified into: 

• those for which the value of the quantity (for example, turbulent kinetic energy) 

(Table 8.1) is calculated on the wall face of the considered cell; 

• those for which the value of the quantity (for example, the dissipative term of the 

turbulence model used) is calculated at the centre of the cell.

4 The article on the basis of which the boundary conditions that make use of wall functions 

were implemented in OpenFOAM® is Georgi Kalitzin, Gorazd Medic, Gianluca Iaccarino, and 

Paul Durbin. Near-wall behavior of RANS turbulence models and implications for wall functions, 

“Journal of Computational Physics”, Vol. 204, pp. 265–291, 2005. 
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Table 8.1 Summary of wall boundary conditions in OpenFOAM® 

.νt nutUWallFunction .νt value based on the value of the 

velocity at the centre of the wall cell 

nutkWallFunction .νt value based on the value of the 

turbulent kinetic energy at the centre of 

the wall cell 

nutLowReWallFunction The value of .νt is set to zero: to be used 

in the case where the centre of the first 

wall cell is inside the laminar sub-layer 

(low-Re) 

nutUSpaldingWallFunction Spalding’s law is used to continuously 

describe the value of .νt as .y
+ varies 

.k kqRWallFunction Based on the zero-gradient condition, this 

boundary condition provides the value of 

k, q and R assuming the centre of the wall 

cell to be within the logarithmic sub-layer 

(high-Re) 

kLowReWallFunction Provides the value of . k for the  case of the  

centre of wall cell within the inertial 

sub-layer as well as it is in the viscous 

sub-layer 

.ǫ epsilonWallFunction Provides the value of . ǫ under the 

assumption that the centre of the wall cell 

is in the logarithmic sub-layer (high-Re) 

epsilonLowReWallFunction Provides the value of . ǫ for the  case of the  

centre of the wall cell is in the inertial 

sub-layer as well as it is in the viscous 

sub-layer using an approximate value 

of . y+

.ω omegaWallFunction Provides the value of . ω for the  case of the  

centre of the wall cell is in the inertial 

sub-layer as well as it is in the viscous 

sub-layer using an approximate value 

of . y+

For quantities calculated with the first approach, a conservation equation is also 

solved in the wall cell, as in all other cells of the computational domain. For quanti-

ties calculated with the second approach (i.e., by providing the wall function value at 

the cell centre), the conservation equation is not solved. Among the quantities whose 

value can be calculated through wall functions are turbulent kinetic energy (kqR-

WallFunctions), the dissipative term of the .k − ǫ model (epsilonWallFunctions), the 

dissipative term of the .k − ω model (omegaWallFunctions), and turbulent viscosity 

(nutWallFunction). The term “LowRe” in the name of the boundary conditions refers 

to the ability to correctly handle the case where the centre of the first wall cell is 

within the laminar sub-layer of the boundary layer. Due to the decrease in velocity in 

this sub-layer, the turbulent Reynolds number is necessarily reduced (see Sect. 8.1.1).
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8.6.1 kqRWallFunctions 

The calculation of turbulent kinetic energy at the centre of the cells having at least 

one face on the wall is performed by solving a conservation equation using the value 

provided by the wall function at the centre of the wall face. The wall functions for 

the calculation of turbulent kinetic energy in OpenFOAM® are: 

• kqRWallFunction; 

• kLowReWallFunction. 

8.6.1.1 kqRWallFunction 

With this boundary condition, it is assumed that, in the zone between the centre of 

the wall cell and the centre of the wall face of the same cell, the turbulent kinetic 

energy is constant and equal to the value calculated at the cell centre. In other words, 

it is assumed that the cell centre is in the inertial sub-layer of the boundary layer (see 

Eq. 20 of the aforementioned article by Kalitzin et al.). This is a Neumann boundary 

condition (zero gradient) for turbulent kinetic energy. This boundary condition is 

also used for: 

• determining the value. q of the square root of turbulent kinetic energy for turbulence 

models such as qZeta; 

• determining the value of the Reynolds stress tensor . R for turbulence models such 

as LRR. 

In the case where the qZeta or LRR turbulence models are not used, the zero-gradient 

condition can be applied, as for .y+ values between 30 and 50, the turbulent kinetic 

energy varies slightly and can therefore be considered constant. 

8.6.1.2 kLowReWallFunction 

This boundary condition should be used in cases where it is possible that the centre of 

the first wall cell is within the viscous sub-layer of the boundary layer. In this case, 

the threshold value of .y+ that separates the viscous sub-layer from the turbulent 

one is first calculated. The buffer zone is then partly modelled with the linear law 

(for .y+ values lower than the limit value) and partly with the logarithmic law (for 

.y+ values higher than the limit value). Assuming a von Karman constant of 0.41 

and a roughness coefficient of 0.9, the threshold value of .y+ is 11. In this boundary 

condition, the shear velocity is initially calculated for each wall cell, assuming that 

the cell centre is in the inertial sub-layer, and therefore using the formula: 

.uτ = C1/4
μ

√
k
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where . k is the turbulent kinetic energy at the centre of the considered wall cell, while 

.Cμ = 0.09. Knowing the value of the shear velocity, it is possible to calculate the 

value of .y+ for the cell centre, which is .y+
p =

uτ

ν
d⊥ by definition. The assumption 

made about the positioning of the cell centre within the inertial sub-layer for the 

calculation of .uτ induces a negligible error in the case where the same cell centre is 

instead in the viscous sub-layer. The dimensionless turbulent kinetic energy on the 

wall face must now be considered. It is defined as .k+ = k/u2
τ . In the case where the 

value of .y+ is higher than the limit value, the following logarithmic law is used: 

. k+ =
Ck

κ
log(y+) + Bk .

.Ck = −0.416 and .Bk = 8.366 are two empirical constants. In the case where the 

value of .y+ is lower than the threshold value, the following law is used 

. k+ =
2400

C2
ǫ2

C f

to calculate the dimensionless turbulent kinetic energy on the wall face, . Cǫ2 = 1.9

is an empirical constant. The following law is used to calculate the term .C f : 

. C f =
1

(y+ + C)2
+

2y+

C3
−

1

C2

with .C = 11 as an empirical constant. Knowing the values of .k+ and . uτ , the  value  

of the turbulent kinetic energy on the wall face is obtained through the: 

. k = k+u2
τ

which allows for solving the transport equation for the turbulent kinetic energy within 

the wall cell using the same approach applied to all other cells of the computational 

domain. 

8.6.2 epsilonWallFunctions 

For the dissipative term of the .k − ǫmodel in the first wall cell, no transport equation 

is solved, and its value at the cell centre is calculated using the value provided by the 

wall function. The wall functions for the calculation of the dissipative term of the 

.k − ǫ model in OpenFOAM® are: 

• epsilonWallFunction; 

• epsilonLowReWallFunction.
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8.6.2.1 epsilonWallFunction 

In this case, it is necessary to consider the possibility that the generic wall cell has 

more than one face on which the wall boundary condition is set. The value of . ǫ at 

the cell centre is calculated based on the distance from the centre of the wall faces: 

. ǫ =
1

W

W
∑

f =1

(

C3/4
μ k3/2

κy f

)

where .W is the number of faces of the cell on which the wall boundary condition has 

been set, . k is the turbulent kinetic energy calculated at the centre of the cell, .y f is the 

distance from the cell centre to the considered face, . κ is the von Karman constant, 

and .Cμ = 0.09. 

8.6.2.2 epsilonLowReWallFunction 

Similarly to what is done for the kLowReWallFunction boundary condition, for the 

calculation of . ǫ at the centre of the wall cell, this boundary condition distinguishes 

the case of .y+ being less than the threshold value from that of .y+ being greater than 

the threshold value. In the case of .y+ greater than the limit value, the calculation is 

performed using the same formula as in the case of the boundary condition epsilon-

WallFunction. In the case of .y+ being less than the limit value, the calculation is 

performed according to the formula below: 

. ǫ =
1

W

W
∑

f =1

(

2kν f

y2f

)

which is derived from the expression of .ǫ+ in the laminar sub-layer. 

. ǫ+ = 2
k+

(y+)2
.

8.6.3 omegaWallFunctions 

This boundary condition is the one to use when using the .k − ω turbulence model 

to obtain the value of the dissipative term . ω at the centre of the wall cells. Similarly 

to what has already been seen for the term . ǫ, to compute the value of . ω for the wall 

cells, the conservation equation is not solved. For this boundary condition, the value 

of . ω at the wall face is first calculated using the following formula, relative to the 

case in which the cell centre is in the viscous sub-layer:
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. ωvis =
6ν

β1y2

with.β1 = 0.075. Then, the value of . ω at the wall face is calculated using the formula 

for the case where the cell centre is in the inertial sub-layer: 

. ωlog =
√

k

C
1/4
μ κy

where . y is the distance of the cell centre from the wall face and . k is the turbulent 

kinetic energy calculated at the cell centre. Finally, the value at the cell centre is 

calculated as a combination of the two previously calculated values: 

. ω =
√

ω2
vis + ω2

log.

Similarly to what has already been seen for the case of the epsilonWallFunction 

boundary condition, in the case where the considered cell has more than one wall 

face, it will be: 

. ω =
1

W

W
∑

f =1

ω f .

8.6.4 nutWallFunctions 

The value of the wall shear stress is necessary for the solution of the momentum 

conservation equation for wall cells. By definition, the wall shear stress is: 

. τw ≡ μ

(

∂u

∂y

)

y=0

having indicated with. μ the molecular viscosity, with. u the component of the velocity 

parallel to the wall, and with . y the distance from the wall, as shown in Fig. 8.8. As  

already seen in Sect. 8.4, it is clear that: 

. τw ≡ μ

(

∂u

∂y

)

y=0

�= μ
�u

�y
= μ

u p

yp

.

To compute the gradient of velocity at the face centre of any interior cell, the linear 

approximation is used. With the aim of using the same approach for wall cells, it is 

possible to 

• use a large number of cells to ensure the validity of the linear approximation;
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• consider a different value of viscosity .μe (effective viscosity) to correct the error 

made in the calculation of the velocity gradient at the wall face using the value of 

the velocity at the centre of the wall cell: 

.τw ≡ μ

(

∂u

∂y

)

y=0

= μe f f

u p

yp

. (8.12) 

In order to obtain an expression for effective viscosity, we consider the definition of 

the dimensionless turbulent kinetic energy .k+: 

. k+ =
k

u2
τ

and its expression in the inertial sub-layer: 

. k+ =
1

√

Cμ

from which we obtain 

. uτ = C1/4
μ k1/2.

By definition, the shear velocity is 

. uτ =
√

τw

ρ

from which 

. τw = ρu2
τ .

Considering the definition of the dimensionless velocity .u+ = u/uτ , we get . uτ =
u/u+, and therefore, recalling the expression of .u+ in the logarithmic sub-layer: 

.τw = ρu2
τ = ρuτ uτ = ρuτ

u

u+ = ρuτ

u p

1
κ
log(Ey+)

(8.13) 

in which .u p is the component parallel to the wall of the velocity at the centre of the 

wall cell. 

Finally, considering Eqs. 8.12 and 8.13, it is  

. μe f f

u p

yp

=
ρuτ u p

1
κ
log(Ey+)

that is, in terms of kinematic viscosity,
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. νe f f

u p

yp

=
uτ u p

1
κ
log(Ey+)

from which, recalling the definition . y+ = yuτ/ν

. νe f f = ν + νt =
y+ν

1
κ
log(Ey+)

and so the expression of the turbulent kinematic viscosity is 

.νt = ν

(

κy+

log(Ey+)
− 1

)

(8.14) 

which is used as a corrective term for the molecular kinematic viscosity to obtain the 

correct value of the wall shear stress. Depending on how the value of.y+ is calculated, 

in OpenFOAM®, different boundary conditions are available for . νt . 

This boundary condition sets the value of the turbulent kinematic viscosity to 

zero, and it is the one to use in cases where the grid is fine enough at the wall to 

correctly resolve the boundary layer. 

8.6.4.1 nutkWallFunction 

This boundary condition involves using the value of the turbulent kinetic energy at 

the centre of the wall cell to determine the value of .y+, which is used for calculating 
the turbulent kinematic viscosity. It is assumed that the centre of the wall cell lies 

in the logarithmic sub-layer for the calculation of .y+. By definition, .y+ = yuτ

ν
and 

.k+ = k
u2

τ
. In the inertial sub-layer, it will be: 

. k+ =
1

√

Cμ

from which, it is 

. uτ = C1/4
μ k1/2

and therefore 

. y+ =
y

ν
C1/4

μ k1/2.

As done for other boundary conditions, even for this one, the value calculated for . y+

is compared with the .y+ limit value: 

• if .y+ is greater than the threshold value, the cell centre is considered to be in 

the logarithmic sub-layer and the turbulent kinematic viscosity is calculated using 

Eq. 8.14;
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• if .y+ is less than the limit value, the cell centre is considered to be in the viscous 

sub-layer and .νt = 0 is assumed. 

8.6.4.2 nutUWallFunction 

For this boundary condition, the calculation of the turbulent kinematic viscosity 

is identical to that of the previous boundary condition. The difference lies in the 

calculation of the value of .y+, which this time is based on the value of the velocity at 

the centre of the wall cell. Recalling the definition of dimensionless velocity . u+ =
u/uτ , it is assumed here, too, that the centre of the wall cell lies in the logarithmic 

sub-layer to calculate the value of .y+: 

. u+ =
u

uτ

=
1

κ
log(Ey+)

from which 

. 

u

yuτ/ν
(y/ν) =

u

y+ (y/ν) =
1

κ
log(Ey+)

and therefore 

. y+ log(Ey+) −
κyu

ν
= 0

which can be solved using the Newton-Raphson method to determine .y+ as: 

. y+
n+1 = y+

n −
f (y+)

f ′(y+)
= y+

n −
y+

n log(Ey+
n ) −

κyu

ν
1 + log(Ey+

n )
=

y+
n +

κyu

ν
1 + log(Ey+

n )

Since the calculation of .y+ is based on the velocity value, this boundary condition 

can be used with both high and low Reynolds number turbulence models. 

8.6.4.3 nutUSpaldingWallFunction 

This boundary condition utilises the law 

.y+ = u+ +
1

E

[

eκu+ − 1 − κu+ −
1

2

(

κu+)2 −
1

6

(

κu+)3

]

(8.15) 

to approximate the curve that links .u+ and .y+ in all three (laminar, buffer, and 

logarithmic) sub-layers of the boundary layer. Since the calculation of .y+ is based 

on the velocity value, this boundary condition can be used with both high and low 

Reynolds number turbulence models. Considering the definition of .y+ and .u+, it is
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. y+ =
ypuτ

ν
u+ =

u p

uτ

.

Substituting into Eq. 8.15, we obtain an implicit equation in .uτ which, as with the 

previous boundary condition, can be solved using the Newton-Raphson method to 

obtain . uτ . Then, considering that by definition it is 

. uτ =
√

τw

ρ
τw = μe f f

u p

yp

,

we obtain 

. νe f f =
u2

τ

u p/yp

.

Keeping in mind that .νe f f = νt + ν, the turbulent kinematic viscosity can be 

calculated as 

. νt =
u2

τ

u p/yp

− ν.

8.7 Implementation Aspects in OpenFOAM® 

Regarding the imposition of wall boundary conditions and specifically the use of 

wall functions, attention must be given to the calculation of the turbulent kinematic 

viscosity . νt . Indicated by the name patch, any surface to which a boundary condi-

tion is imposed, the file 0/nut will contain the word calculated for all patches, 

except for those defined as walls. This is because the turbulent kinematic viscosity 

can be calculated as .νt = k/ω everywhere, but on the surface of a wall, where the 

velocity is imposed to be zero, the turbulent kinetic energy . k will also be zero, and 

consequently .νt will be zero. In the case where the centre wall cell is characterised 

by .y+ > 30, this would lead to a significant error in the calculation of the wall shear 

stress, defined as 

. τw = νe f f

∂u

∂y
.

When the wall is parallel to the x-axis, the error would derive not only from impos-

ing .νt = 0, but also from an incorrect calculation of the velocity gradient normal 

to the wall. To overcome this problem, the implementation of the wall function in 

OpenFOAM® modifies the value of .νt in order to correct the value of the veloc-

ity gradient normal to the wall, making it consistent with what is predicted by the 

curves shown in Fig. 8.7. The wall function normally used in OpenFOAM® is the 

one indicated by the word nutkWallFunction, which sets a velocity profile cor-

responding to the logarithmic law for values of .y+ of the wall cell centre greater
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Table 8.2 Example of wall boundary conditions in the case of a boundary layer resolved by the 

grid (LowRe) 

.νt nutLowReWallFunction or calculated 

.k fixedValue=0 

.ǫ fixedValue=0 or calculated 

.ω fixedValue=0 or calculated 

Table 8.3 Example of wall boundary conditions in the case of boundary layer not resolved by the 

grid (HighRe) 

.νt nutUWallFunction 

.k kqRWallFunction or zeroGradient 

.ǫ epsilonWallFunction 

.ω omegaWallFunction 

than 30 and imposes .νt = 0 for values of .y+ less than 11. A different wall func-

tion, indicated by the word nutUSpaldingWallFunction, assigns .νt values 

different from zero up to .y+ = 0. In the case of a grid fine enough to resolve the 

boundary layer (with the first cell at the wall having .y+ ≤ 1), it is possible to set the 

value in the file 0/nut to calculated also for the walls. Consistently, the value 

of . k will be set to zero and zeroGradient will be applied for . ω or . ǫ on the walls 

(Tables 8.2 and 8.3). 

8.8 Initial Values of Turbulent Quantities 

Here, the.k − ω turbulence model will be used to solve an incompressible flow, whose 

governing equations therefore do not include the term representing density. One 

consequence of this choice is that, instead of the dynamic viscosity . μ, the kinematic 

viscosity. ν will be considered, making the turbulent kinematic viscosity.νt = k/ω. A  

key challenge in setting up a turbulent simulation is defining the initial and boundary 

values of the turbulent quantities. The turbulent length scale is a parameter that more 

intuitively represents the size of the turbulent vortices than other measures. It is 

defined as 

.L = C3/4
μ

k3/2

ǫ
(8.16) 

with .Cμ = 0.09. 

The value of .L is typically estimated empirically. Specifically, it is common 

practice to set .L as a percentage of the characteristic dimensions of the problem. 

For a fully developed turbulent flow inside a duct, .L = 0.07Dh is used, where . Dh

is the hydraulic diameter. The hydraulic diameter is defined as .Dh = 4A/P , where
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. A is the cross-sectional area of the duct through which the flow passes, and .P is the 

perimeter enclosing. A. In the case of flows bounded by a single wall, the length of the 

turbulent scales is defined as .L = 0.4Db, where .Db is the boundary layer thickness 

at the section where the boundary condition is applied. 

The estimation of turbulent kinetic energy . k follows a similar approach to that 

used for . L . The turbulent kinetic energy can be expressed in terms of turbulent 

intensity . I : 

. k =
3

2
(vI )2

where the turbulent intensity is defined as 

. I =

√

1
3

(

u
′2 + v

′2 + w
′2
)

√

u2 + v2 + w2

which essentially quantifies velocity fluctuations relative to the average velocity. For 

a fully developed turbulent flow inside a duct, .1% < I < 10% is typically assumed, 

or an empirical formula can be used. 

. I = 0.16Re−1/8

where .Re =
|v| Dh

ν
. For external flows, .0.05% < I < 1% is typically assumed. 

Given . L and . k, the following quantity can be determined 

. ω = C−1/4
μ

√
k

L
.

Using Eq. 8.16 it is possible to calculate 

. ǫ = C3/4
μ

k3/2

L
.

Once the values of. k and. ω have been calculated, it is always advisable to calculate the 

corresponding value of the turbulent kinematic viscosity.νt = k/ω to prevent obtain-

ing excessively high values typical of very viscous fluids, such as honey, associated 

with velocity magnitudes on the order of 10 m/s, which would necessitate verifying 

the calculations and assumptions. Typical values of . νt range between .10−6 and .10−2.
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8.9 Large Eddy Simulation (LES) 

Unlike the RANS approach, where all turbulent vortices are modelled, the Large Eddy 

Simulation (LES) approach distinguishes large turbulent vortices (large eddies) from 

smaller ones, resolving the former without modelling and modelling the latter. 

The fundamental principle of the LES approach is that large vortices exhibit 

characteristics strongly dependent on the type of flow, whereas smaller vortices have 

properties common to all flows, making their models universally valid. The scale of 

the vortices to be resolved is determined by applying a spatial statistical filter to the 

Navier–Stokes equations, yielding the filtered Navier–Stokes equations. In general, 

the filtering length scale, denoted by . �, can be computed using various approaches, 

including those available in OpenFOAM®: 

• cubeRootVol; 

• maxDeltaxyz; 

• maxDeltaxyzCubeRoot; 

• smooth; 

• vanDriest; 

• Prandtl; 

• IDDESDelta. 

When the filter is solely determined by the cell size and its resolution capabilities, 

it is referred to as the implicit filtering technique. In this approach, the minimum 

size of the turbulent vortices is dictated by the cell size. Figure 8.9 illustrates, for a 

given discretised computational domain, the maximum size of resolvable turbulent 

vortices (largest circle), the minimum resolvable size (intermediate circle), and the 

largest vortices that remain unresolved due to the grid resolution (smallest circle). 

Modelled vortices are smaller than the grid cells. Sub-Grid Scale (SGS) models refer 

to models that account for the contribution of unresolved vortices in describing the 

flow. The SGS models available in OpenFOAM® include: 

• Smagorinsky; 

• kEqn; 

• dynamicLagrangian; 

• dynamicKEqn; 

• WALE (Wall-Adapting Local Eddy-viscosity); 

• DeardorffDiffStress. 

Fig. 8.9 Dimensions of 

turbulent vortices for a given 

computational discretised 

domain: maximum, 

minimum, and maximum 

unresolved (modelled) size
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In electronic applications, filters are devices designed to modify a signal by elim-

inating unwanted components. In the LES context, a ‘low-pass’ filter is used, which 

leaves unchanged only the harmonics with frequencies lower than the so-called ‘cut-

off frequency’. The initial signal to which the filter is applied represents the temporal 

development of quantities, such as pressure or velocity. 

A fundamental characteristic of a filter is the function used to represent it. In 

three-dimensional LES, the spatial filter function .G(x, y) is defined as a function 

of the six spatial coordinates of two points, . x and . y. Applying a filter to a generic 

quantity .φ(x, t) yields the filtered version of the same quantity: 

. φ(x, t) =
∫

G(x, y)φ(y, t)d3y.

The quantity .φ(x, t) can therefore be decomposed into its filtered part, .φ(x, t), and 

the remaining part, .φ′(x, t), called the ‘residue’, expressed as: 

.φ′(x, t) = φ(x, t) − φ(x, t). (8.17) 

The filtered part is the resolved part (i.e., the turbulent vortices of larger dimen-

sions), while the residue is the modelled part (i.e., the turbulent vortices of smaller 

dimensions). It should be noted that: 

• the bar over the filtered quantity indicates the calculation of the spatial average 

through a three-dimensional integration, unlike the RANS case where the temporal 

average is calculated; 

• filtering is a linear operation. 

A commonly used example of a filter is the rectangular filter (box filter), defined as 

follows: 

. G(x, y) =

⎧

⎪

⎨

⎪

⎩

1

�3
f or |x − y| �

�

2

0 f or |x − y| >
�

2

where the symbol . � represents the filter width, indicative of the minimum amplitude 

of turbulent vortices that should not be eliminated by the filter: in other words, . �

represents the dimension of the smallest resolved turbulent vortices that are not 

modelled. The expression commonly used to calculate .� is: 

. � = 3
√

�x�y�z

where.�x ,.�y,.�z represent the dimensions of a generic cell in the three-dimensional 

grid. 

For simplicity, the unfiltered Navier–Stokes equations are presented here in the 

absence of momentum sources for a fluid with constant viscosity.
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The continuity equation is as follows: 

. 

∂ρ

∂t
+ ∇ · (ρu) = 0.

The first component of the momentum conservation equation is as follows: 

.. 

∂ρu

∂t
+ ∇ · (ρuu) = μ∇ · (∇u) −

∂ p

∂x
.

The second component of the momentum conservation equation is as follows: 

.. 

∂ρv

∂t
+ ∇ · (ρuv) = μ∇ · (∇v) −

∂ p

∂y
.

The third component of the momentum conservation equation is as follows: 

.. 

∂ρw

∂t
+ ∇ · (ρuw) = μ∇ · (∇w) −

∂ p

∂z
.

Considering the filter function .G(x, y) = G(x − y) and exploiting the linearity 

of the filtering operation, we obtain the filtered Navier–Stokes equations for the 

incompressible case. 

The filtered continuity equation is as follows: 

. ∇ · u = 0

which coincides with the continuity equation used in LES. 

The first component of the filtered momentum conservation equation is as follows: 

.

∂ρu

∂t
+ ∇ · (ρuu) = μ∇ · (∇u) −

∂ p

∂x
. (8.18) 

The second component of the filtered momentum conservation equation is as follows: 

.

∂ρv

∂t
+ ∇ · (ρuv) = μ∇ · (∇v) −

∂ p

∂y
. (8.19) 

The third component of the filtered momentum conservation equation as follows: 

.

∂ρw

∂t
+ ∇ · (ρuw) = μ∇ · (∇w) −

∂ p

∂z
. (8.20) 

The ability to solve these four equations to obtain the filtered motion field (. u, . v, . w, 

. p) depends on the ability to calculate the terms .∇ · (ρuφ) (with .φ = u, v, w), which 

can, however, be rewritten as:
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.∇ · (ρuφ) = ∇ · (ρuφ) +
[

∇ · (ρuφ) − ∇ · (ρuφ)

]

. (8.21) 

Using Eq. 8.21, it is possible to rewrite Eqs. 8.18, 8.19, 8.20 as: 

.

∂ρu

∂t
+ ∇ · (ρu u) = μ∇ · (∇u) −

∂ p

∂x
− [∇ · (ρuu) − ∇ · (ρu u)] (8.22) 

.

∂ρv

∂t
+ ∇ · (ρu v) = μ∇ · (∇v) −

∂ p

∂y
− [∇ · (ρuv) − ∇ · (ρu v)] (8.23) 

.

∂ρw

∂t
+ ∇ · (ρu w) = μ∇ · (∇w) −

∂ p

∂z
− [∇ · (ρuw) − ∇ · (ρu w)] (8.24) 

which are the conservation of momentum equations solved when performing a LES. 

• the terms .
∂ρφ

∂t
represent the time variation of the three components of the filtered 

momentum; 

• the terms .∇ · (ρu φ) and .μ∇ · (∇φ) represent the convective and diffusive fluxes 

for the three components of the filtered momentum; 

• the terms .− ∂ p

∂x
, .− ∂ p

∂y
, and .− ∂ p

∂z
represent the three components of the gradient of 

the filtered pressure. 

In the RANS approach, the tensor of Reynolds stresses appears due to the temporal 

averaging of values in the Navier–Stokes equations. Similarly, given that .uφ �= u φ, 

particular attention must be paid when dealing with the terms . ∇ · (ρuφ) − ∇ · (ρuφ)

resulting from the filtered quantities (spatial averages). It is possible to write the i-th 

component of the tensor of stresses deriving from the filtered quantities as 

. 

[

∇ · (ρuφ) − ∇ · (ρuφ)

]

= ∇ ·
(

ρuφ − ρuφ
)

= ∇ · (ρuui − ρu ui ) =

∇ · (ρuiu − ρui u) =
∂ (ρui u − ρui u)

∂x
+

∂ (ρuiv − ρui v)

∂y
+

∂ (ρuiw − ρui w)

∂z
=

∂τi j

∂x j

where 

. τi j = ρuiu − ρui u = ρui u j − ρui u j .

The term .τi j is called modelled stress (subgrid-scale stress or subfilter-scale stress) 

and represents the transport of momentum due to the interactions among the turbulent 

modelled vortices that are not resolved because they are too small compared to the 

minimum dimensions imposed by the filter value. Now, considering Eq. 8.17, it can 

be written 

. φ(x, t) = φ(x, t) + φ′(x, t)

from which
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. ρui u j = ρ(ui + u′
i )(u j + u′

j ) = ρui u j + ρui u
′
j + ρu′

i u j + ρu′
i u

′
j =

ρui u j +
(

ρui u j − ρui u j

)

+ ρui u
′
j + ρu′

i u j + ρu′
i u

′
j .

Thus, the total modelled stress is as follows: 

. τi j = ρui u j − ρui u j =
(

ρui u j − ρui u j

)

+ ρui u
′
j + ρu′

i u j + ρu′
i u

′
j .

The last expression can be further modified by grouping some of its terms: 

. τi j = L i j + Ci j + Ri j

• .L i j = ρui u j − ρui u j represents the Leonard stresses, so-called after the name 

of the researcher who first discovered the method for the approximate calculation 

of this term starting from the filtered quantities. This term contains only filtered 

(resolved) quantities and therefore does not require modelling; 

• .Ci j = ρui u
′
j + ρu′

i u j represents the stresses due to the interaction between the 

modelled and resolved turbulent vortices (cross-stress); 

• .Ri j = ρu′
i u

′
j represents the stresses due to the interaction among modelled turbu-

lent vortices. This term, known as unresolved Reynolds stresses (SGS Reynolds 

stress), must be modelled using sub-grid/sub-filter scale turbulence models. 

8.9.1 Smagorinsky-Lilly Modelling 

Due to their small size, unresolved turbulent vortices can be assumed to follow 

the Smagorinsky hypothesis of isotropy. As with the Boussinesq hypothesis in the 

RANS approach (see Sect. 8.1), the local value of the unresolved Reynolds stresses 

is assumed to be proportional to the local value of the deformation velocity tensor 

of the filtered (i.e., resolved) part of the flow. Therefore, defining the deformation 

velocity tensor (see Sect. 1.2.1) of the filtered part of the flow as 

. Si j =
1

2

(

∂ui

∂x j

+
∂u j

∂xi

)

the original Smagorinsky model predicts: 

.Ri j = −2μSGS Si j +
1

3
Ri iδi j = −μSGS

(

∂ui

∂x j

+
∂u j

∂xi

)

+
1

3
Ri iδi j (8.25) 

in which the proportionality coefficient .μSGS represents the dynamic SGS viscosity; 

the term .

1

3
Ri iδi j plays the same role as the term .− 2

3
ρkδi j in Eq. 8.3. In other words,
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the term .
1

3
Ri iδi j allows the sum of the normal stresses—that is, the sum of the 

elements of the main diagonal of the tensor of the unresolved Reynolds stresses— 

to be equal to the turbulent kinetic energy of the unresolved turbulent vortices. In 

common practice, despite the differing nature of its elements, the modelled stress 

tensor .τi j is calculated using Eq. 8.25: 

..τi j = −2μSGS Si j +
1

3
τi iδi j = −μSGS

(

∂ui

∂x j

+
∂u j

∂xi

)

+
1

3
τi iδi j . (8.26) 

To determine the value of the dynamic SGS viscosity .μSGS , we use the Prandtl 

mixing length model. The SGS kinematic viscosity is defined as .νSGS = μSGS/ρ, 

with dimensions of length squared divided by time (.m2/s). Therefore, the SGS 

kinematic viscosity can be expressed, considering only physical dimensions, as the 

product of length . l0 and velocity . v0. For length, we could consider a characteristic 

length of the turbulent unresolved vortices, which, under the assumption of implicit 

LES, will be a fraction (.CSGS) of the dimension .� of the actual cell: .l0 = CSGS�. 

Based on dimensional analysis, we can define velocity as the product of length and 

spatial derivative. Thus, defining the modulus of the deformation velocity tensor as 

.

∣

∣S
∣

∣ =
√

2Si j Si j , the length will always be .l0 = CSGS�, while the spatial derivative 

is .
∣

∣S
∣

∣. In conclusion, 

. μSGS = ρl0l0
∣

∣S
∣

∣ = ρ (CSGS�)2
√

2Si j Si j .

Theoretical studies by Lilly on the decay rate of turbulent isotropic vortices in the 

inertial range of the turbulent energy spectrum have led to the consideration of reli-

able values between .0.17 and .0.21 for the dimensionless constant .CSGS . Subsequent 

studies have attributed different values to.CSGS for different types of flow, suggesting 

that the behaviour of the ‘small’ turbulent vortices may not be as ‘universal’ as ini-

tially hypothesised. Therefore, there are cases where more sophisticated techniques 

are required to model unresolved turbulent vortices. 

8.9.2 Evaluation of LES Calculations 

Considering that grids with very small cells are much more expensive in terms of 

computational costs compared to grids with larger cells at parity of total dimensions of 

the computational domain, it is desirable to determine the minimum cell size required 

to obtain acceptable LES results. In this context, it is necessary to familiarise oneself 

with the concept of energy cascade and related concepts. Given a certain turbulent 

vortex, assumed to be circular with diameter . d, it is characterised by a wave number 

.κ = 2π/d. From this definition, smaller turbulent vortices will have a higher wave 

number or spatial frequency. It should be noted that, although represented by the same
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Fig. 8.10 Energy density 

spectrum: on the left, the 

resolved part; on the right, 

the modelled part in a LES 

Fig. 8.11 Integral length 

scale 

symbol, the wave number and turbulent kinetic energy should not be confused. In 

Fig. 8.1, the energy density spectrum is shown, which reports the density of turbulent 

kinetic energy .E as a function of the wave number. From the analysis of the energy 

density spectrum, it is noted that turbulent vortices of larger dimensions—and lower 

wave number—are associated with a higher energy density. The area under the curve 

of the energy density spectrum represents the total turbulent kinetic energy of the 

flow at the considered point. This total turbulent kinetic energy is calculated using 

the RANS approach, where all turbulent vortices are modelled and indistinguishable. 

In LES, vortices larger than the minimum cell size are resolved, while the remain-

ing vortices are modelled. Considering the energy density spectrum diagram in 

Fig. 8.10, part of the total turbulent kinetic energy of the flow is resolved, and part 

is modelled. A LES is considered acceptable if at least eighty percent of the total 

turbulent kinetic energy is resolved. The energy density spectrum is a local char-

acteristic of the flow. As a consequence, each cell of a computational grid will be 

characterised by a specific energy density spectrum. The integral length scale . l0 is 

defined in order to obtain a grid that resolves no less than eighty percent of the total 

turbulent kinetic energy of the flow at every cell in the computational domain. The 

integral length scale represents the dimension . l0 of a turbulent vortex whose energy 

is equal to the average value of the total turbulent kinetic energy present at the point 

in the computational domain. From a mathematical point of view it will be (Fig. 8.11) 

. l0 =

∫ ∞
0

1

k
E(k)dk

∫ ∞
0

E(k)dk
.

To better understand what has been written so far regarding the integral length scale 

and the variation of the energy density spectrum as a function of position within the
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computational domain, it is useful to observe Fig. 8.12, in which different zones are 

associated with different energy spectra and different integral length scales. Typically, 

before performing LES simulations, a RANS calculation is performed to obtain the 

distributions of quantities such as turbulent kinetic energy . k and dissipation, which 

can be, for example, . ǫ or . ω, depending on the turbulence model used. Knowing these 

quantities, it is possible to calculate the value of the integral length scale as 

. l0 =
k3/2

ǫ
or l0 =

k1/2

Cμω
.

A suitable data visualisation tool can be used to visualise the integral length scale 

distribution over the entire computational domain. .Cμ is the constant used in the case 

where the .k − ω turbulence model is used in the RANS simulation. In Fig. 8.12, it  

shows that the minimum size necessary to resolve a turbulent vortex of size . l0 varies 

depending on the position in the computational domain. Observing Fig. 8.9, it is  

noted that at least four cells are required to resolve a turbulent vortex. In other words, 

to resolve at least eighty percent of the turbulent kinetic energy in a generic point of 

the computational domain characterised by an integral length scale . l0, a reasonable 

initial estimate is to consider a grid whose cells have a maximum dimension .� not 

exceeding.l0/5. Smaller values of the filter. �will lead to resolving higher percentages 

of the total turbulent kinetic energy. 

Figure 8.13 illustrates the case of a uniform Cartesian grid. In order to identify 

which areas of the computational domain are characterised by an inadequate level 

of grid refinement, it is appropriate to define the quantity. 

. f =
l0

�
=

k3/2

ǫ�

2 /l0 
2 /l0 

Fig. 8.12 Variation of the energy density spectrum and integral length scale as a function of position 

within the computational domain, and the corresponding cell size as a function of the integral length 

scale
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Fig. 8.13 Maximum cell 

size required to resolve at 

least eighty percent of the 

turbulent kinetic energy at a 

point in the computational 

domain characterised by an 

integral length scale . l0

in which the value of the filter .� is calculated according to one of the methods 

described above. Once the quantity . f is defined, it is possible to visualise its distri-

bution in the computational domain by identifying the areas characterised by . f < 5

as those in which it is necessary to reduce the size of the cells. Once the preparatory 

phase, in which a calculation grid is constructed based on the results obtained with 

previous RANS simulations, is completed, we now want to evaluate the quality of 

the grid based on the results obtained with the LES. The evaluation of aspects such 

as the integration time interval or the total number of time intervals performed will 

be discussed later. Once again, a possible evaluation criterion is based on the concept 

of turbulent kinetic energy, which, for an acceptable LES, must be resolved for not 

less than eighty percent of the total at every point in the computational domain (see 

Fig. 8.10). The process of evaluating the quality of the grid based on LES results 

involves a series of steps. The first consists of observing that, considering for exam-

ple only the velocity, the results of the simulation are the instantaneous values at each 

point in the computational domain. Figure 8.14 shows the polygonal chain represent-

ing the modulus .U of the velocity component along one of the three coordinate axes 

at a specific point in the computational domain as a function of time. The dashed 

curve instead provides the temporal average of these instantaneous values. In order 

to obtain the correct average velocity value in each cell, it is necessary to continue the 

simulation until reaching a statistically stationary value of the velocity itself. From 

this moment on, it will be possible to use the obtained values to calculate the correct 

average velocity value.
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Knowing the average velocity field (see Fig. 8.16), it is possible to subtract it from 

the instantaneous velocity field (see Fig. 8.15) to obtain the field of instantaneous 

velocity fluctuations .u′ (see Fig. 8.17). As these fluctuations were obtained, it is 
clear that they are derived from the turbulent vortices resolved by the grid, rather 

than those modelled. Observing Fig. 8.2, it is evident that making a temporal average 

of . u′ results in a value of exactly zero, as . u′ is the fluctuation component. In formula: 

.u′ = 0. Consequently, it follows that .u′ · u′ = 0, while .u′u′ �= 0. 

What has been considered so far is only one of the three components of velocity. 

Therefore, it will be necessary to consider all three components, namely 

. u′ = U − U , v′ = V − V , w′ = W − W .

Considering that the kinetic energy per unit mass is generally defined as half the 

product of the velocity vector with itself, to calculate the kinetic energy of the fluc-

tuations or the turbulent kinetic energy, it will be necessary to consider the sum of 

the products of the various components. The turbulent kinetic energy resolved by the 

grid will be 

. kres =
1

2

(

u′u′ + v′v′ + w′w′
)

or, equivalently 

.kres =
1

2

(

(u′)2 + (v′)2 + (w′)2
)

. (8.27) 

To better understand how to obtain this value if OpenFOAM® is used, it is necessary to 

consider that the nine possible products between the components of the instantaneous 

velocity fluctuation 

. u′u′, u′v′, u′w′, v′u′, v′v′, v′w′, w′u′, w′v,′ w′w′

Representing the instantaneous Reynolds stresses and their time average value, the 

Reynolds stress tensor per unit mass is organised in matrix form as follows: 

Fig. 8.14 Velocity value 

obtained from an LES at a 

point in the computational 

domain and its average value 

over time 

t0 

U 

U
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Fig. 8.15 Example of instantaneous velocity field 

Fig. 8.16 Example of average velocity field 

Fig. 8.17 Example of instantaneous velocity fluctuation field 

. 

Ri j

ρ
=

⎡

⎣

u′u′ u′v′ u′w′

v′u′ v′v′ v′w′

w′u′ w′v′ w′w′

⎤

⎦ .

Considering that 

. u′v′ = v′u′ u′w′ = w′u′ v′w′ = w′v′,

we obtain the symmetric tensor 

. 

Ri j

ρ
=

⎡

⎣

u′u′ u′v′ u′w′

v′v′ v′w′

w′w′

⎤

⎦

The elements of this tensor have units of measure .m2/s2. 

Among the various results of an LES performed using OpenFOAM®, the values 

of this tensor will be contained in the file uPrime2Mean. Taking advantage of the 

symmetry of this tensor and to reduce the computer memory usage required, only 

six, and not nine, components will be stored. Once the values of the Reynolds stress 

tensor are obtained, it is possible to calculate the value of the turbulent kinetic energy 

resolved by the grid using Eq. 8.27. Data visualisation software typically allows cre-

ating new quantities from those initially available. Therefore, a new quantity can 

be defined in the Data visualisation software as 0.5*(UPrime2Mean_XX2̂ +  

UPrime2Mean_YY2̂ + UPrime2Mean_ZZ2̂). As an example, Fig. 8.18 shows
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the case in which the data analysis software is Paraview®. In the same figure, high-

lighted at the bottom, there is a button to choose from the six possible components 

of the tensorial field UPrime2Mean. Once the turbulent kinetic energy resolved 

by the grid is available, we aim to determine the value of the modelled turbulent 

kinetic energy .ksgs over the entire computational domain. In other words, we seek to 

determine the value of turbulent kinetic energy derived from turbulent vortices that 

have dimensions smaller than those minimum necessary for the grid to resolve them. 

In the case of a LES performed using OpenFOAM®, such values are written in the 

file k. It is then possible to analyse the distribution of two distinct fields—.kres and 

.ksgs—as shown in Figs. 8.19 and 8.20. 

Noting .kres and .ksgs it is possible to define the new field 

. 

kres

kres + ksgs

Representative of the percentage of resolved turbulent kinetic energy relative to the 

total turbulent kinetic energy, as shown in Fig. 8.21. Zones of the computational 

domain characterised by values lower than eighty percent will need to undergo grid 

refinement. It is useful to remind that reductions in the minimum cell size lead to an 

increase in the percentage of resolved turbulent kinetic energy compared to the total 

turbulent kinetic energy.
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Fig. 8.18 Calculation of the resolved turbulent kinetic energy through paraview
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Fig. 8.19 Example of .kres distribution in a computational domain 

Fig. 8.20 Example of .ksgs distribution in a computational domain 

Fig. 8.21 Example of the distribution of the percentage of resolved turbulent kinetic energy 

compared to the total turbulent kinetic energy in a computational domain
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